Chaos synchronization of different chaotic systems subjected to input nonlinearity

Abstract In this paper, a unified mathematical expression describing a class of synchronization systems is presented, for which the problem of chaos synchronization between different chaotic systems with input nonlinearity has been studied. Based on Lyapunov stability theory, a sliding mode controller and some generic sufficient conditions for global asymptotic synchronization are designed such that the error dynamics of two different chaotic motions satisfy stability in the Lyapunov sense in spite of the input nonlinearity. This technique is applied to achieve chaos synchronization of three pairs of different chaotic systems (Lorenz–Chen, Chen–Liu, and Liu–Lorenz) in drive–response structure. The numerical simulation results demonstrate the validity and feasibility of the proposed controller.

[1]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[2]  Zhi-Hong Guan,et al.  Adaptive synchronization for Chen chaotic system with fully unknown parameters , 2004 .

[3]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[4]  Akio Tsuneda,et al.  A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.

[5]  Her-Terng Yau,et al.  Fuzzy Sliding Mode Control for a Class of Chaos Synchronization with Uncertainties , 2006 .

[6]  M. Yassen Controlling, synchronization and tracking chaotic Liu system using active backstepping design , 2007 .

[7]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[8]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[9]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[10]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[11]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[12]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[13]  Kuang-Yow Lian,et al.  Adaptive synchronization design for chaotic systems via a scalar driving signal , 2002 .

[14]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[15]  J.-K. Lee,et al.  Chaos synchronization and parameter identification for gyroscope system , 2005, Appl. Math. Comput..

[16]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[17]  X. Liao,et al.  A Note on Mathematical Aspects of Drive–Response Type Synchronization , 1999 .

[18]  Chen Cong Switching Manifold Approach to Chaos Synchronization , 2001 .

[19]  Heng-Hui Chen Global synchronization of chaotic systems via linear balanced feedback control , 2007, Appl. Math. Comput..

[20]  Leon O. Chua,et al.  ON ADAPTIVE SYNCHRONIZATION AND CONTROL OF NONLINEAR DYNAMICAL SYSTEMS , 1996 .

[21]  Wang Rui,et al.  Synchronization of discrete spatiotemporal chaos by using variable structure control , 2005 .

[22]  Her-Terng Yau,et al.  Synchronization Control for a Class of Chaotic Systems with Uncertainties , 2005, Int. J. Bifurc. Chaos.

[23]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[24]  T. Liao,et al.  Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity , 2005 .

[25]  Xinghuo Yu,et al.  Chaos Synchronization via Controlling Partial State of Chaotic Systems , 2001, Int. J. Bifurc. Chaos.

[26]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[27]  T. Liao,et al.  Adaptive Synchronization of Two Lorenz Systemsfn1 , 1998 .

[28]  Leon O. Chua,et al.  ADAPTIVE SYNCHRONIZATION OF CHUA'S OSCILLATORS , 1996 .

[29]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .