Cluster-based reduced-order modelling of a mixing layer

We propose a novel cluster-based reduced-order modelling (CROM) strategy of unsteady flows. CROM combines the cluster analysis pioneered in Gunzburger's group (Burkardt et al. 2006) and and transition matrix models introduced in fluid dynamics in Eckhardt's group (Schneider et al. 2007). CROM constitutes a potential alternative to POD models and generalises the Ulam-Galerkin method classically used in dynamical systems to determine a finite-rank approximation of the Perron-Frobenius operator. The proposed strategy processes a time-resolved sequence of flow snapshots in two steps. First, the snapshot data are clustered into a small number of representative states, called centroids, in the state space. These centroids partition the state space in complementary non-overlapping regions (centroidal Voronoi cells). Departing from the standard algorithm, the probabilities of the clusters are determined, and the states are sorted by analysis of the transition matrix. Secondly, the transitions between the states are dynamically modelled using a Markov process. Physical mechanisms are then distilled by a refined analysis of the Markov process, e.g. using finite-time Lyapunov exponent and entropic methods. This CROM framework is applied to the Lorenz attractor (as illustrative example), to velocity fields of the spatially evolving incompressible mixing layer and the three-dimensional turbulent wake of a bluff body. For these examples, CROM is shown to identify non-trivial quasi-attractors and transition processes in an unsupervised manner. CROM has numerous potential applications for the systematic identification of physical mechanisms of complex dynamics, for comparison of flow evolution models, for the identification of precursors to desirable and undesirable events, and for flow control applications exploiting nonlinear actuation dynamics.

[1]  Guillaume Daviller,et al.  Etude numérique des effets de température dans les jets simples et coaxiaux , 2010 .

[2]  L. Biferale,et al.  Exit-Time Approach to e-Entropy , 2000 .

[3]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[4]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[5]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[6]  Peter A. Monkewitz,et al.  Subharmonic resonance, pairing and shredding in the mixing layer , 1988, Journal of Fluid Mechanics.

[7]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[8]  Gilead Tadmor,et al.  Using large eddy simulation to explore sound-source mechanisms in jets , 2011 .

[9]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[10]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[11]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[12]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[13]  B. R. Noack,et al.  Maximum-entropy closure for a Galerkin model of an incompressible periodic wake , 2012, Journal of Fluid Mechanics.

[14]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[15]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[16]  P. Dimotakis,et al.  The mixing layer at high Reynolds number: large-structure dynamics and entrainment , 1976, Journal of Fluid Mechanics.

[17]  George Leitmann,et al.  Dynamics and Control , 2020, Fundamentals of Robotics.

[18]  Shi-Da Liu Nonlinear dynamics and turbulence , 1986 .

[19]  Yi Peng,et al.  A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set , 2012, PloS one.

[20]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[21]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[22]  G. Nicolis,et al.  Spectral signature of the pitchfork bifurcation: Liouville equation approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  C. Fletcher Computational Galerkin Methods , 1983 .

[24]  Max D. Gunzburger,et al.  Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems , 2006, SIAM J. Sci. Comput..

[25]  O. Cadot,et al.  Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability , 2013, Journal of Fluid Mechanics.

[26]  Boris G. Mirkin,et al.  Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads , 2010, J. Classif..

[27]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[28]  Olivier Cadot,et al.  Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  B. R. Noack,et al.  Feedback shear layer control for bluff body drag reduction , 2008, Journal of Fluid Mechanics.

[30]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[31]  Gilead Tadmor,et al.  A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration , 2009 .

[32]  M Abel,et al.  Exit-time approach to epsilon-entropy. , 2000, Physical review letters.

[33]  Stephen Wiggins,et al.  A method for visualization of invariant sets of dynamical systems based on the ergodic partition. , 1999, Chaos.

[34]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[35]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[36]  R. Niven Combinatorial entropies and statistics , 2009, 0902.3038.

[37]  Bernd R. Noack,et al.  Maximum-entropy closure for a Galerkin system of incompressible shear flow , 2011 .

[38]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[39]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[40]  L. Biferale,et al.  Exit-times and -entropy for dynamical systems, stochastic processes, and turbulence , 2000 .

[41]  Wolfgang Schröder,et al.  On least-order flow representations for aerodynamics and aeroacoustics , 2012, Journal of Fluid Mechanics.

[42]  Erik M. Bollt,et al.  Applied and Computational Measurable Dynamics , 2013, Mathematical modeling and computation.

[43]  Daniel D. Joseph,et al.  Nonlinear dynamics and turbulence , 1983 .

[44]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[45]  Peter J. Schmid,et al.  A physics-based approach to flow control using system identification , 2012, Journal of Fluid Mechanics.

[46]  John Kim,et al.  Control and system identification of a separated flow , 2008 .

[47]  Patrick D. Weidman,et al.  Large scales in the developing mixing layer , 1976, Journal of Fluid Mechanics.

[48]  Laurent Cordier,et al.  Calibration of POD reduced‐order models using Tikhonov regularization , 2009 .

[49]  J. Nathan Kutz,et al.  Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data , 2013 .

[50]  Gunther Ramm,et al.  Some salient features of the time - averaged ground vehicle wake , 1984 .

[51]  Erik M. Bollt,et al.  Identifying stochastic basin hopping by partitioning with graph modularity , 2007 .

[52]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[53]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[54]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[55]  D. Rempfer On Boundary Conditions for Incompressible Navier-Stokes Problems , 2006 .

[56]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[57]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[58]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[59]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[60]  Chabane Djeraba,et al.  Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics , 2008, Advanced Information and Knowledge Processing.

[61]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[62]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[63]  L. Sirovich,et al.  Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour , 1994, Journal of Fluid Mechanics.

[64]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[65]  Dmitry Turaev,et al.  Quasiattractors and Homoclinic Tangencies , 1997 .

[66]  Aapo Hyvärinen,et al.  Independent component analysis: recent advances , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[68]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[69]  Sylvain Laizet,et al.  Direct numerical simulation of a mixing layer downstream a thick splitter plate , 2010 .

[70]  Dan S. Henningson,et al.  Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows , 2009 .

[71]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[72]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[73]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[74]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[75]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[76]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[77]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[78]  Stefan Becker,et al.  Flow and Turbulence Structure in the Wake of a Simplified Car Model , 2003 .

[79]  Gilead Tadmor,et al.  Galerkin Method for Nonlinear Dynamics , 2011 .

[80]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[81]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[82]  B. Eckhardt,et al.  Statistical analysis of coherent structures in transitional pipe flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .