Fractal Generation in Modified Jungck–S Orbit

The aim of this paper is to modify the Jungck-S iterative scheme by adding the idea of <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>-convexity. We define and analyze the modified Jungck-S orbit (MJSO) with <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>-convex combination and derive the escape criterion for MJSO. Moreover, we establish the algorithms to visualize some Julia sets, Mandelbrot sets, and biomorphs in this orbit. In the biomorph generation algorithm, we did not fix the threshold radius of proposed orbit (i.e., MJSO) as fixed in literature earlier. We also discuss the graphical behavior of some complex polynomials in the generation of Julia sets, Mandelbrot sets, and biomorphs in MJSO.

[1]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[2]  Guangxing Wang,et al.  COMPOSED ACCELERATED ESCAPE TIME ALGORITHM TO CONSTRUCT THE GENERAL MANDELBROT SETS , 2001 .

[3]  Michael Levin,et al.  Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning , 2012, Biosyst..

[4]  M. R. Pinheiro,et al.  S-convexity-foundations for Analysis , 2007 .

[5]  Agnieszka Lisowska,et al.  Biomorphs via Modified Iterations , 2016 .

[6]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[7]  Nelly Selem Mojica,et al.  Cellular "bauplans": Evolving unicellular forms by means of Julia sets and Pickover biomorphs , 2009, Biosyst..

[8]  Shin Min Kang,et al.  Tricorns and Multicorns of -Iteration Scheme , 2015 .

[9]  Vasileios Drakopoulos,et al.  An overview of parallel visualisation methods for Mandelbrot and Julia sets , 2003, Comput. Graph..

[10]  Krzysztof Gdawiec,et al.  Fixed point results for the complex fractal generation in the S -iteration orbit with s -convexity , 2018 .

[11]  Faisal Ali,et al.  Fractals through Modified Iteration Scheme , 2016 .

[12]  Shin Min Kang,et al.  Mandelbrot and Julia Sets via Jungck–CR Iteration With $s$ –Convexity , 2019, IEEE Access.

[13]  Ashish Negi,et al.  New Julia Sets of Ishikawa Iterates , 2010 .

[14]  T. Ivancevic,et al.  Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals , 2008 .

[15]  Jos Leys Biomorphic art: an artist's statement , 2002, Comput. Graph..

[16]  Shin Min Kang,et al.  Fixed point results in the generation of Julia and Mandelbrot sets , 2015 .

[17]  Vasileios Drakopoulos Comparing Rendering Methods for Julia Sets , 2002, WSCG.

[18]  Shin Min Kang,et al.  Fixed point results for fractal generation in Noor orbit and s-convexity , 2016, SpringerPlus.

[19]  C A Pickover,et al.  Biom orphs: Computer Displays of Biological Forms Generated from Mathematical Feedback Loops , 1986, Comput. Graph. Forum.