Reduced-order ℋ2/ℋ∞ control of discrete-time LPV systems with experimental validation on an overhead crane test setup

This paper presents a numerically attractive approach to design reduced-order multi-objective ℋ<sub>2</sub>/ℋ<sub>∞</sub> controllers for discrete-time linear parameter-varying (LPV) systems. The proposed controller synthesis approach relies on an a priori computed polynomially parameter-dependent full-order LPV controller that stabilizes the LPV system for all possible parameter trajectories. This full-order controller is subsequently used in a sufficient linear matrix inequality (LMI) optimization problem for reduced-order ℋ<sub>2</sub>/ℋ<sub>∞</sub> LPV synthesis. Pólya relaxations are used to obtain tractable LMI formulations, and a simplicial subdivision of the parameter domain is applied to relieve the numerical burden. Experimental validations on a lab-scale overhead crane with varying cable length illustrate the practical viability of the approach.

[1]  L. H. Lee Reduced-order solutions to H/sub /spl infin// and LPV control problems involving partial-state feedback , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[2]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[3]  Goele Pipeleers,et al.  Sufficient LMI conditions for reduced-order multi-objective H2/H∞ control of LTI systems , 2015, Eur. J. Control.

[4]  Jan De Caigny Contributions to the Modeling and Control of Linear Parameter-Varying Systems (Bijdragen tot de modellering en controle van lineaire parameter-variërende systemen) , 2009 .

[5]  Jan Swevers,et al.  Gain‐scheduled dynamic output feedback control for discrete‐time LPV systems , 2012 .

[6]  P. Apkarian,et al.  Mixed H2/H∞ multi-channel linear parameter-varying control in discrete time , 2000 .

[7]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[8]  Goele Pipeleers,et al.  Gain-Scheduled Controller Design: Illustration on an Overhead Crane , 2014, IEEE Transactions on Industrial Electronics.

[9]  Ricardo C. L. F. Oliveira,et al.  Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design , 2009, Autom..

[10]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[11]  Michael L. Overton,et al.  Multiobjective robust control with HIFOO 2.0 , 2009, 0905.3229.

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[14]  A. Karimi,et al.  Robust Fixed-Order Discrete-Time LPV Controller Design , 2014 .

[15]  Goele Pipeleers,et al.  An LMI approach for reduced-order ℋ2 LTI controller synthesis , 2013, 2013 American Control Conference.

[16]  Jan Swevers,et al.  Interpolation-Based Modeling of MIMO LPV Systems , 2011, IEEE Transactions on Control Systems Technology.

[17]  Shinji Hara,et al.  A unified approach to LMI-based reduced order self-scheduling control synthesis , 1999 .

[18]  Masayuki Sato,et al.  Gain-scheduled output-feedback controllers depending solely on scheduling parameters via parameter-dependent Lyapunov functions , 2011, Autom..

[19]  Lawton Lee Reduced-Order Solutions to 3c, and LPV Control Problems Involving Partial-State Feedback , 1997 .

[20]  Ricardo C. L. F. Oliveira,et al.  LMI Relaxations for Reduced-Order Robust ${\cal H}_{\infty}$ Control of Continuous-Time Uncertain Linear Systems , 2012, IEEE Transactions on Automatic Control.

[21]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[22]  P. Apkarian,et al.  Nonsmooth H ∞ synthesis , 2005 .

[23]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..