Photonic Quantum Networks formed from NV− centers

In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV−, with one nuclear spin from 15N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.

[1]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[2]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[3]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[4]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[5]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[6]  Charles Santori,et al.  Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. , 2012, Nano letters.

[7]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[8]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[9]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Yoshihisa Yamamoto,et al.  Single-photon Devices and Applications , 2010 .

[11]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[12]  P. Zoller,et al.  Photonic channels for quantum communication , 1998, Science.

[13]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[14]  Hybrid-system approach to fault-tolerant quantum communication , 2012, 1209.3851.

[15]  Timothy P. Spiller,et al.  Towards a quantum information technology industry , 2006 .

[16]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[17]  Jian-Wei Pan,et al.  Experimental long-distance decoy-state quantum key distribution based on polarization encoding. , 2006, Physical review letters.

[18]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[19]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[20]  D Budker,et al.  Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. , 2011, Physical review letters.

[21]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[22]  Richard J. Hughes,et al.  Practical long-distance quantum key distribution system using decoy levels , 2008, 0806.3085.

[23]  Kae Nemoto,et al.  Requirements for fault-tolerant factoring on an atom-optics quantum computer , 2012, Nature Communications.

[24]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[25]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[26]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[27]  Rodney Van Meter,et al.  System design for a long-line quantum repeater , 2009, IEEE/ACM Trans. Netw..

[28]  R. V. Meter,et al.  A Layered Architecture for Quantum Computing Using Quantum Dots , 2010 .

[29]  Lee C. Bassett,et al.  Spin-Light Coherence for Single-Spin Measurement and Control in Diamond , 2010, Science.

[30]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[31]  Ying Li,et al.  Long range failure-tolerant entanglement distribution , 2013 .

[32]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[33]  W. Munro,et al.  High-fidelity gate operations with the coupled nuclear and electron spins of a nitrogen-vacancy center in diamond , 2013, 1309.3107.

[34]  S. Shikata,et al.  High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. , 2012, Physical review letters.

[35]  Yiwen Chu,et al.  Quantum Entanglement Between an Optical Photon and a Solid-State Spin Qubit , 2011 .

[36]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[37]  Jonathan P. Dowling Schrödinger's Killer App: Race to Build the World's First Quantum Computer , 2013 .

[38]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[39]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[40]  George Rajna,et al.  Second Quantum Revolution , 2016 .

[41]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[43]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[44]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[45]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[46]  Jakob Reichel,et al.  Measurement of the internal state of a single atom without energy exchange , 2011, Nature.

[47]  R. T. Harley,et al.  Persistent spectral hole burning of colour centres in diamond , 1984 .

[48]  E. Waks,et al.  A quantum phase switch between a single solid-state spin and a photon. , 2015, Nature nanotechnology.

[49]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[50]  Cody Jones,et al.  A high-speed optical link to entangle quantum dots , 2013, 1310.4609.

[51]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[52]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[53]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[54]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Norbert Kalb,et al.  Heralded Storage of a Photonic Quantum Bit in a Single Atom. , 2015, Physical review letters.

[56]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[57]  W. Marsden I and J , 2012 .

[58]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[59]  Ulrich Schmid,et al.  Arrays of open, independently tunable microcavities. , 2013, Optics express.

[60]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[61]  Kae Nemoto,et al.  A ug 2 00 8 A high bandwidth quantum repeater , 2008 .

[62]  Haifeng Pan,et al.  High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface. , 2015, Optics express.

[63]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[65]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[66]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[67]  Raymond G. Beausoleil,et al.  Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond , 2008 .

[68]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[69]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[70]  Neil B. Manson,et al.  Optically detected spin coherence of the diamond N-V centre in its triplet ground state , 1988 .

[71]  M. Razavi,et al.  Long-distance quantum key distribution with imperfect devices , 2012, 1210.8042.

[72]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[73]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[74]  Stephan Dürr,et al.  Optical π phase shift created with a single-photon pulse , 2015, Science Advances.

[75]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[76]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[77]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[78]  A. Zeilinger,et al.  Three-color Sagnac source of polarization-entangled photon pairs. , 2009, Optics express.

[79]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.