Concise configuration interaction expansions for three fermions in six orbitals
暂无分享,去创建一个
[1] David A. Mazziotti,et al. Structure of the one-electron reduced density matrix from the generalized Pauli exclusion principle , 2015 .
[2] C. L. Benavides-Riveros,et al. Quasipinning and selection rules for excitations in atoms and molecules , 2014, 1409.6953.
[3] C. Schilling. Quasipinning and its relevance forN-fermion quantum states , 2014, 1409.0019.
[4] Lin Chen,et al. Universal Subspaces for Local Unitary Groups of Fermionic Systems , 2013, 1301.3421.
[5] Michael Walter,et al. Multipartite Quantum States and their Marginals , 2014, 1410.6820.
[6] P. L'evay,et al. Coffman-Kundu-Wootters inequality for fermions , 2014, 1408.6735.
[7] P. L'evay,et al. Entanglement classification of three fermions with up to nine single-particle states , 2013, 1312.2786.
[8] J. M. Zhang,et al. Optimal multiconfiguration approximation of an N -fermion wave function , 2013, 1309.1848.
[9] Lin Chen,et al. Canonical form of three-fermion pure-states with six single particle states , 2013, 1306.2570.
[10] C. L. Benavides-Riveros,et al. Quasipinning and entanglement in the lithium isoelectronic series , 2013, 1306.6528.
[11] Matthias Christandl,et al. Pinning of fermionic occupation numbers. , 2012, Physical review letters.
[12] Matthias Christandl,et al. Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.
[13] A. Klyachko. The Pauli exclusion principle and beyond , 2009, 0904.2009.
[14] P. L'evay,et al. Three fermions with six single-particle states can be entangled in two inequivalent ways , 2008, 0806.4076.
[15] A. Klyachko,et al. The Pauli Principle Revisited , 2008, 0802.0918.
[16] Mary Beth Ruskai,et al. Connecting N-representability to Weyl's problem: the one-particle density matrix for N = 3 and R = 6 , 2007, 0706.1855.
[17] István Mayer,et al. Using singular value decomposition for a compact presentation and improved interpretation of the CIS wave functions , 2007 .
[18] A. Klyachko. Quantum marginal problem and N-representability , 2005, quant-ph/0511102.
[19] J. V. Ortiz. Brueckner orbitals, Dyson orbitals, and correlation potentials , 2004 .
[20] A. Klyachko. QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.
[21] The Hopf algebra of identical, fermionic particle systems—Fundamental concepts and properties , 2003 .
[22] A. Sudbery,et al. One-qubit reduced states of a pure many-qubit state: polygon inequalities. , 2002, Physical review letters.
[23] L. You,et al. Quantum correlations in two-boson wave functions , 2001, quant-ph/0106117.
[24] A. Acín,et al. Three-qubit pure-state canonical forms , 2000, quant-ph/0009107.
[25] A. Sudbery. On local invariants of pure three-qubit states , 2000, quant-ph/0001116.
[26] Tarrach,et al. Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical review letters.
[27] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[28] P. Cassam-Chenaï. Variational spaces of electronic calculations in quantum chemistry , 1994 .
[29] S. Larsson. Brueckner‐Hartree‐Fock method for finite electronic systems , 1973 .
[30] K. Dennis,et al. The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .
[31] K. Dennis,et al. A simple approximation beyond Hartree-Fock , 1970 .
[32] L. Weisner,et al. Foundations of the theory of algebraic invariants , 1966 .
[33] V. H. Smith,et al. On Different Criteria for the Best Independent‐Particle Model Approximation , 1964 .
[34] A. J. Coleman. THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .
[35] R. Nesbet. Brueckner's Theory and the Method of Superposition of Configurations , 1958 .
[36] Harrison Shull,et al. NATURAL ORBITALS IN THE QUANTUM THEORY OF TWO-ELECTRON SYSTEMS , 1956 .