Matrix Normal Cluster-Weighted Models
暂无分享,去创建一个
Paul D. McNicholas | Antonio Punzo | Salvatore D. Tomarchio | P. McNicholas | A. Punzo | S. Tomarchio
[1] Gianfranco Piras,et al. splm: Spatial Panel Data Models in R , 2012 .
[2] Paul D. McNicholas,et al. Clustering and classification via cluster-weighted factor analyzers , 2012, Advances in Data Analysis and Classification.
[3] Salvatore Ingrassia,et al. Modeling Return to Education in Heterogeneous Populations: An Application to Italy , 2017, Statistical Learning of Complex Data.
[4] P. McNicholas. Mixture Model-Based Classification , 2016 .
[5] Volodymyr Melnykov,et al. Studying crime trends in the USA over the years 2000–2012 , 2018, Adv. Data Anal. Classif..
[6] P. McNicholas,et al. A matrix variate skew‐t distribution , 2017, Pattern Recognit..
[7] Giovanni Millo,et al. Non-life insurance consumption in Italy: a sub-regional panel data analysis , 2011, J. Geogr. Syst..
[8] Cinzia Viroli,et al. Finite mixtures of matrix normal distributions for classifying three-way data , 2011, Stat. Comput..
[9] A. Punzo. Flexible mixture modelling with the polynomial Gaussian cluster-weighted model , 2012, 1207.0939.
[10] Salvatore Ingrassia,et al. Parsimonious Generalized Linear Gaussian Cluster-Weighted Models , 2015 .
[11] Salvatore Ingrassia,et al. Model-based clustering via linear cluster-weighted models , 2012, Comput. Stat. Data Anal..
[12] M. Cugmas,et al. On comparing partitions , 2015 .
[13] A. Montanari,et al. A Matrix-Variate Regression Model with Canonical States: An Application to Elderly Danish Twins , 2014 .
[14] P. Dutilleul. The mle algorithm for the matrix normal distribution , 1999 .
[15] Paul D. McNicholas,et al. Model-Based Clustering , 2016, Journal of Classification.
[16] Ranjan Maitra,et al. Simulating Data to Study Performance of Finite Mixture Modeling and Clustering Algorithms , 2010 .
[17] Giorgio Vittadini,et al. The Generalized Linear Mixed Cluster-Weighted Model , 2015, Journal of Classification.
[18] Luca Bagnato,et al. Two new matrix-variate distributions with application in model-based clustering , 2020, Comput. Stat. Data Anal..
[19] Salvatore Ingrassia,et al. Clustering bivariate mixed-type data via the cluster-weighted model , 2016, Comput. Stat..
[20] Ryan P. Browne,et al. Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models , 2014, Journal of Classification.
[21] Salvatore Ingrassia,et al. On parsimonious models for modeling matrix data , 2020, Comput. Stat. Data Anal..
[22] N. Gershenfeld,et al. Cluster-weighted modelling for time-series analysis , 1999, Nature.
[23] Salvatore Ingrassia,et al. Decision boundaries for mixtures of regressions , 2016 .
[24] Neil Gershenfeld,et al. Nonlinear Inference and Cluster‐Weighted Modeling , 1997 .
[25] Volodymyr Melnykov,et al. On model-based clustering of skewed matrix data , 2018, J. Multivar. Anal..
[26] P. McNicholas,et al. Families of Parsimonious Finite Mixtures of Regression Models , 2013, 1312.0518.
[27] L. Hubert,et al. Comparing partitions , 1985 .
[28] F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R , 2004 .
[29] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[30] Salvatore Ingrassia,et al. Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition , 2020, J. Classif..
[31] Maurizio Vichi,et al. Studies in Classification Data Analysis and knowledge Organization , 2011 .
[32] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[33] Paul D. McNicholas,et al. Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model , 2014, J. Classif..
[34] Cinzia Viroli,et al. On matrix-variate regression analysis , 2012, J. Multivar. Anal..
[35] George B. Macready,et al. Concomitant-Variable Latent-Class Models , 1988 .
[36] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[37] C. Viroli,et al. Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data , 2014, 1401.1301.
[38] Paul D. McNicholas,et al. Finite mixtures of skewed matrix variate distributions , 2018, Pattern Recognit..
[39] Xiao-Li Meng,et al. The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .
[40] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[41] Salvatore Ingrassia,et al. flexCWM: A Flexible Framework for Cluster-Weighted Models , 2018 .
[42] W. DeSarbo,et al. A maximum likelihood methodology for clusterwise linear regression , 1988 .
[43] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[44] Volodymyr Melnykov,et al. An effective strategy for initializing the EM algorithm in finite mixture models , 2016, Advances in Data Analysis and Classification.
[45] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[46] Giorgio Vittadini,et al. Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions , 2012, J. Classif..