First- and higher-order noninterference QED radiative corrections to the charge asymmetry at the Z resonance.

A variety of analytical and numerical results on the noninterference QED {ital O}({alpha}) and {ital O}({alpha}{sup 2}) corrections to forward-backward (charge) asymmetry {ital A}{sub FB} are presented. Three definitions of the scattering angle and six definitions of the {ital A}{sub FB} are examined. For loose cutoffs, at the {ital Z} position, the pure {ital O}({alpha}{sup 2}) noninterference correction is found to be {delta}{ital A}{sub FB}{congruent}8{times}10{sup {minus}3} with the theoretical uncertainty below {similar to}1{times}10{sup {minus}3}. All numerical and analytical calculations can be parametrized using a simple semianalytical formula: {ital A}{sub FB} to within {delta}{ital A}{sub FB}{congruent}0.5{times}10{sup {minus}3} on the {ital Z} resonance and {congruent}0.5{times}10{sup {minus}2} off the resonance, {ital M}{sub {ital Z}}{minus}5 GeV{lt} {radical}{ital s} {lt}{ital M}{sub {ital Z}}+5 GeV; the differential distribution {ital d}{sigma}/{ital d} cos{theta} to a relative precision of 5{times}10{sup {minus}3}. These results can be very useful for (i) quantitative parametrization of the exact Monte Carlo results, (ii) discussion of the electroweak corrections, and (iii) experimental data analysis.

[1]  R. Stuart,et al.  Standard model electroweak radiative corrections to longitudinal polarization asymmetry Apol and forward-backward asymmetry AFB in e+e− → μ+μ− on the off and the Z0 resonance , 1985 .

[2]  G. Parisi,et al.  Asymptotic Freedom in Parton Language , 1977 .

[3]  Z. Was,et al.  Suppression of QED interference contributions to the charge asymmetry at the Z0 resonance , 1989 .

[4]  S. Glashow Partial Symmetries of Weak Interactions , 1961 .

[5]  Sidney D. Drell,et al.  Massive Lepton-Pair Production in Hadron-Hadron Collisions at High Energies , 1970 .

[6]  Steven Weinberg,et al.  A Model of Leptons , 1967 .

[7]  D. Yennie,et al.  The infrared divergence phenomena and high-energy processes , 1961 .

[8]  R. Zitoun,et al.  QED corrections to the forward-backward asymmetry at LEP energies , 1989 .

[9]  S. Weinberg Effects of a Neutral Intermediate Boson in Semileptonic Processes , 1972 .

[10]  R. Frühwirth,et al.  Angular distributions and structure functions from two-jet events at the CERN SPS collider , 1984 .

[11]  M. Bilenky,et al.  The convolution integral for the forward-backward asymmetry in e+e− annihilation , 1989 .

[12]  S. Drell,et al.  Partons and their applications at high energies , 1971 .

[13]  T. Riemann,et al.  Electroweak radiative corrections to deep inelastic scattering at HERA , 1989 .

[14]  W. Beenakker,et al.  The width of theZ boson , 1988 .

[15]  D. Soper,et al.  Angular distribution of dileptons in high-energy hadron collisions , 1977 .

[16]  Z. Was,et al.  Uncertainties in τ polarization measurement at SLC/LEP and QED/electroweak radiative corrections , 1989 .

[17]  D. C. Kennedy,et al.  Electroweak Cross-Sections and Asymmetries at the Z0 , 1989 .

[18]  L. Mo,et al.  Radiative Corrections to Elastic and Inelastic e p and mu p Scattering , 1969 .

[19]  C. Hawkes,et al.  The forward-backward asymmetry ine+e−→μ+μ− , 1986 .

[20]  G. Bonneau,et al.  HARD-PHOTON EMISSION IN e+e - REACTIONS , 1971 .

[21]  L. Maximon Comments on Radiative Corrections , 1969 .

[22]  Y. Dokshitzer,et al.  Hard Processes in Quantum Chromodynamics , 1980 .

[23]  R. Kleiss,et al.  Monte carlo simulation of radiative corrections to the processes e+e− → μ+μ− and e+− → q in the Z0 region , 1984 .