Operation planning for the large-aperture Synoptic Survey Telescope

The Large-aperture Synoptic Survey Telescope will repeatedly image a large fraction of the visible sky in multiple optical passbands in a way that will sample temporal phenomena over a large range of time scales. This will enable a suite of synoptic investigations that range in temporal sampling requirements from the detection of near Earth asteroids (minutes), through discovery and followup of supernovae to long period monitoring of QSOs, AGN and LPVs (years). Additionally, the data must be obtained in a way to support programs aimed at building up deep static images of part or all of the sky. Here we examine some of the issues involved in crafting an observing scheme that serves these goals. The problem has several parts: a) what is the optimal time sampling strategy that best serves the desired temporal range? b) how can a chosen time sampling sequence be packed into an observing scheme that accommodates all pointings and 'whiteout' windows (daytime, lunation period)? c) how vulnerable is such an observing plan to realistic models of disruption by poor observing conditions and weather? d) how does one build in the most economical contingency/redundancy to i) mitigate against such disruption and ii) reserve time for recovery and followup of transient phenomena (e.g. gamma-ray bursts, supernovae)? In this article we touch upon several of these issues, and come to an understanding of some of the limitations, as well as areas in which scientific priorities and trade-offs will have to be made.