Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution

Abstract LiNi0.5Mn1.5O4−xFx (0 ≤ x ≤0.1) cathodes, synthesized by ultrasonic spray pyrolysis at 900 °C, exhibit superior structural and electrochemical properties. The samples are characterized by X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and electrochemical measurements. During Li+ extraction, LiNi0.5Mn1.5O4−xFx has a smaller lattice variation and area-specific impedance than LiNi0.5Mn1.5O4. This enhances the rate capability, especially at high C-rates. LiNi0.5Mn1.5O4−xFx also exhibits better resistance than LiNi0.5Mn1.5O4 to attack by HF.

[1]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[2]  Mikito Nagata,et al.  High-voltage lithium cathode materials , 1999 .

[3]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[4]  Masayuki Takashima,et al.  Surface fluorination of the cathode active materials for lithium secondary battery , 2004 .

[5]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[6]  J. Prakash,et al.  Synthesis and Electrochemical Properties of Li [ Ni1 / 3Co1 / 3Mn ( 1 / 3 − x ) Mg x ] O 2 − y F y via Coprecipitation , 2004 .

[7]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[8]  Yangfang Sun,et al.  Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material for prepared by ultrasonic spray pyrolysis method , 2005 .

[9]  Ralph E. White,et al.  Electrochemical Investigations of Cobalt-Doped LiMn 2 O 4 as Cathode Material for Lithium-Ion Batteries , 1998 .

[10]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[11]  K. Amine,et al.  A New Three‐Volt Spinel Li1 + x Mn1.5Ni0.5 O 4 for Secondary Lithium Batteries , 1996 .

[12]  Yang‐Kook Sun,et al.  Overcoming Jahn‐Teller Distortion for Spinel Mn Phase , 1999 .

[13]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[14]  Shinichi Komaba,et al.  Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method , 2002 .

[15]  Takashi Uchida,et al.  The Spinel Phases LiM y Mn2 − y O 4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries , 1996 .

[16]  K. Nahm,et al.  Synthesis and Characterization of a New Spinel, Li1.02Al0.25Mn1.75 O 3.97 S 0.03, Operating at Potentials Between 4.3 and 2.4 V , 2000 .

[17]  M. Yoshio,et al.  Unique Aluminum Effect of LiAl x Mn2 − x O 4 Material in the 3 V Region , 2001 .

[18]  Norbert Adolph Lange,et al.  Handbook of chemistry , 1944 .

[19]  J. Prakash,et al.  Phase Transitions in Li1 − δ Ni0.5Mn1.5 O 4 during Cycling at 5 V , 2004 .

[20]  Wu Haoqing,et al.  Electrochemical studies of substituted spinel LiAlyMn2−yO4−zFz for lithium secondary batteries , 2001 .

[21]  T. Umegaki,et al.  Electrochemical Characteristics of LiNi0.5Mn1.5 O 4 Cathodes with Ti or Al Current Collectors , 2002 .

[22]  Y. Ein‐Eli,et al.  LiMn2 − x Cu x O 4 Spinels (0.1 ⩽ x ⩽ 0.5): A new Class of 5 V Cathode Materials for Li Batteries I. Electrochemical, Structural, and Spectroscopic Studies , 1998 .

[23]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[24]  C. Sigala,et al.  Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0 ≤ y ≤ 1) , 1995 .

[25]  C. Yoon,et al.  Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332 , 2004 .

[26]  Yang‐Kook Sun,et al.  Improvement of High-Voltage Cycling Behavior of Surface-Modified Li [ Ni1 ∕ 3Co1 ∕ 3Mn1 ∕ 3 ] O2 Cathodes by Fluorine Substitution for Li-Ion Batteries , 2005 .

[27]  Jai Prakash,et al.  Characterization of a commercial size cylindrical Li-ion cell with a reference electrode , 2000 .