Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression

We design a numerical scheme for solving a Dynamic Programming equation with Malliavin weights arising from the time-discretization of backward stochastic differential equations with the integration by parts-representation of the $Z$-component by (Ann. Appl. Probab. 12 (2002) 1390-1418). When the sequence of conditional expectations is computed using empirical least-squares regressions, we establish, under general conditions, tight error bounds as the time-average of local regression errors only (up to logarithmic factors). We compute the algorithm complexity by a suitable optimization of the parameters, depending on the dimension and the smoothness of value functions, in the limit as the number of grid times goes to infinity. The estimates take into account the regularity of the terminal function.

[1]  J. Chassagneux,et al.  Numerical simulation of quadratic BSDEs , 2013, 1307.5741.

[2]  P. Briand,et al.  Simulation of BSDEs by Wiener Chaos Expansion , 2012, 1204.4137.

[3]  Emmanuel Gobet,et al.  L2-time regularity of BSDEs with irregular terminal functions , 2010 .

[4]  Emmanuel Gobet,et al.  Error expansion for the discretization of backward stochastic differential equations , 2006, math/0602503.

[5]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[6]  Dan Crisan,et al.  Sharp derivative bounds for solutions of degenerate semi-linear partial differential equations , 2012 .

[7]  E. Gobet SENSITIVITY ANALYSIS USING ITÔ – MALLIAVIN CALCULUS AND , 2002 .

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[10]  Arturo Kohatsu-Higa,et al.  Variance Reduction Methods for Simulation of Densities on Wiener Space , 2002, SIAM J. Numer. Anal..

[11]  Emmanuel Gobet,et al.  Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions , 2015, Math. Comput..

[12]  L. Györfi,et al.  A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .

[13]  P. Turkedjiev Numerical methods for backward stochastic differential equations of quadratic and locally Lipschitz type , 2013 .

[14]  Emmanuel Gobet,et al.  Generalized fractional smoothness and Lp-variation of BSDEs with non-Lipschitz terminal condition , 2011, 1103.0371.

[15]  D. Nualart,et al.  Malliavin calculus for backward stochastic differential equations and application to numerical solutions , 2011, 1202.4625.

[16]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[17]  Plamen Turkedjiev,et al.  Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions , 2013, 1309.4378.

[18]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.

[19]  Lucia Caramellino,et al.  Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach , 2005, Monte Carlo Methods Appl..

[20]  Adrien Richou,et al.  Numerical simulation of BSDEs with drivers of quadratic growth , 2010, 1001.0401.

[21]  G. Guatteri,et al.  Weak existence and uniqueness for forward–backward SDEs , 2006 .

[22]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[23]  MA BYJIN,et al.  REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS , 2002 .

[24]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .