Transport and sensing in nanofluidic devices.

Ion transport and sensing in nanofluidic devices are receiving a great deal of attention because of their unique transport properties and potential analytical applications. Some aspects of microscale transport transfer directly to the nanoscale, but nanofluidic systems can be significantly influenced by phenomena such as double-layer overlap, surface charge, ion-current rectification, diffusion, and entropic forces, which are either insignificant or absent in larger microchannels. Micro- and nanofabrication techniques create features with a wide range of well-defined geometries and dimensions in synthetic and solid-state substrates. Moreover, these techniques permit coupling of multiple nano- and microscale elements, which can execute various functions. We discuss basic nanofluidic architectures, material transport properties through single and multiple nanochannels, and characterization of single particles by resistive-pulse sensing.

[1]  Z. Siwy,et al.  Asymmetric diffusion through synthetic nanopores. , 2005, Physical review letters.

[2]  E. Yusko,et al.  Electroosmotic flow can generate ion current rectification in nano- and micropores. , 2010, ACS nano.

[3]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[4]  Jongyoon Han,et al.  Characterization and optimization of an entropic trap for DNA separation. , 2002, Analytical chemistry.

[5]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[6]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[7]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[8]  Sung Jae Kim,et al.  Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. , 2007, Physical review letters.

[9]  Kristen L. Helton,et al.  Separation of Long DNA Molecules in a Microfabricated Entropic Trap Array , 2022 .

[10]  S. Jacobson,et al.  Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. , 2008, Journal of the American Chemical Society.

[11]  Gregory W. Bishop,et al.  Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. , 2007, Journal of the American Chemical Society.

[12]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Arun Majumdar,et al.  Effects of biological reactions and modifications on conductance of nanofluidic channels. , 2005, Nano letters.

[14]  Z. Siwy,et al.  Nanofluidic diode. , 2007, Nano letters.

[15]  S. Jacobson,et al.  Effect of conical nanopore diameter on ion current rectification. , 2009, The journal of physical chemistry. B.

[16]  Sung-Wook Nam,et al.  Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. , 2010, Nano letters.

[17]  Meni Wanunu,et al.  Nanopore based sequence specific detection of duplex DNA for genomic profiling. , 2010, Nano letters.

[18]  Jonathan V Sweedler,et al.  Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. , 2003, Analytical chemistry.

[19]  A. Majumdar,et al.  Rectification of ionic current in a nanofluidic diode. , 2007, Nano letters.

[20]  Ronald W Davis,et al.  Current rectification with poly-l-lysine-coated quartz nanopipettes. , 2006, Nano letters.

[21]  C. P. Bean,et al.  Counting and Sizing of Submicron Particles by the Resistive Pulse Technique , 1970 .

[22]  Kevin Ke,et al.  Submicrometer pore-based characterization and quantification of antibody-virus interactions. , 2006, Small.

[23]  R. Kawano,et al.  Quartz nanopore membranes for suspended bilayer ion channel recordings. , 2010, Analytical Chemistry.

[24]  A. G. Ogston,et al.  The spaces in a uniform random suspension of fibres , 1958 .

[25]  Zuzanna S Siwy,et al.  Detecting single porphyrin molecules in a conically shaped synthetic nanopore. , 2005, Nano letters.

[26]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[27]  J. Sweedler,et al.  Gateable nanofluidic interconnects for multilayered microfluidic separation systems. , 2003, Analytical chemistry.

[28]  Cees Dekker,et al.  Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. , 2009, Nano letters.

[29]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[30]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[31]  Peidong Yang,et al.  Nanofluidic diodes based on nanotube heterojunctions. , 2009, Nano letters.

[32]  Sung Jae Kim,et al.  Direct seawater desalination by ion concentration polarization. , 2010, Nature nanotechnology.

[33]  Zuzanna S Siwy,et al.  Resistive-pulse DNA detection with a conical nanopore sensor. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[34]  Warren K. Mino,et al.  A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. , 2007, Small.

[35]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[36]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[37]  A. L. Stevens,et al.  A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. , 2007, Nature nanotechnology.

[38]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[39]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[40]  Katsuhiro Shirono,et al.  Nanofluidic diode and bipolar transistor. , 2005, Nano letters.

[41]  J. Heath,et al.  Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. , 2009, Nano letters.

[42]  Cees Dekker,et al.  Detection of local protein structures along DNA using solid-state nanopores. , 2010, Nano letters.

[43]  A. Majumdar,et al.  Diffusion-limited patterning of molecules in nanofluidic channels. , 2006, Nano letters.

[44]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[45]  Stephen W. Feldberg,et al.  Current Rectification at Quartz Nanopipet Electrodes , 1997 .

[46]  A. L. Stevens,et al.  Million-fold preconcentration of proteins and peptides by nanofluidic filter. , 2005, Analytical chemistry.

[47]  S. Brueck,et al.  Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. , 2009, Lab on a chip.

[48]  Q. Ouyang,et al.  Asymmetric properties of ion transport in a charged conical nanopore. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  C. Trautmann,et al.  Ion transport through asymmetric nanopores prepared by ion track etching , 2003 .

[50]  Stephen C Jacobson,et al.  Nanofluidics in lab-on-a-chip devices. , 2009, Analytical chemistry.

[51]  A. Meller,et al.  DNA profiling using solid-state nanopores: detection of DNA-binding molecules. , 2009, Nano letters.

[52]  Mario Cabodi,et al.  Entropic recoil separation of long DNA molecules. , 2002, Analytical chemistry.

[53]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.

[54]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[55]  Harold G. Craighead,et al.  ENTROPIC TRAPPING AND ESCAPE OF LONG DNA MOLECULES AT SUBMICRON SIZE CONSTRICTION , 1999 .

[56]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[57]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[58]  A. Majumdar,et al.  Field-effect control of protein transport in a nanofluidic transistor circuit , 2006 .

[59]  C. P. Bean,et al.  Electrokinetic measurements with submicron particles and pores by the resistive pulse technique , 1977 .

[60]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[61]  P. Apel,et al.  Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties , 2008, Nanotechnology.

[62]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[63]  C. Dekker,et al.  Translocation of RecA-coated double-stranded DNA through solid-state nanopores. , 2009, Nano letters.

[64]  Andreas Bund,et al.  Ion current rectification at nanopores in glass membranes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[65]  Sung Jae Kim,et al.  Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. , 2007, Analytical chemistry.

[66]  Jiahai Wang,et al.  A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. , 2008, Nanomedicine.

[67]  S. Jacobson,et al.  Attoliter-scale dispensing in nanofluidic channels. , 2007, Analytical chemistry.

[68]  Ulrich Tallarek,et al.  Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. , 2007, Journal of separation science.

[69]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[70]  R. Crooks,et al.  Bipolar electrode focusing: simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. , 2009, Analytical chemistry.

[71]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[72]  Stephen C Jacobson,et al.  Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. , 2008, Analytical chemistry.

[73]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[74]  D. Woermann Analysis of non-ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical pore , 2002 .

[75]  Ryan J. White,et al.  Sensitivity and signal complexity as a function of the number of ion channels in a stochastic sensor. , 2009, Analytical chemistry.

[76]  T. Thornton,et al.  Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization. , 2009, Analytical chemistry.

[77]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[78]  Jongyoon Han,et al.  Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. , 2008, Lab on a chip.

[79]  Susan Daniel,et al.  Single ion-channel recordings using glass nanopore membranes. , 2007, Journal of the American Chemical Society.

[80]  S. Jacobson,et al.  Characterization of hepatitis B virus capsids by resistive-pulse sensing. , 2011, Journal of the American Chemical Society.

[81]  Shizhi Qian,et al.  Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores , 2010 .

[82]  S. Jacobson,et al.  Ion transport in nanofluidic funnels. , 2010, ACS nano.

[83]  Shaorong Liu,et al.  Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures , 2004 .

[84]  Shizhi Qian,et al.  Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. , 2009, Journal of colloid and interface science.

[85]  Cees Dekker,et al.  Unraveling single-stranded DNA in a solid-state nanopore. , 2010, Nano letters.

[86]  Michael X. Macrae,et al.  Nanoscale ionic diodes with tunable and switchable rectifying behavior. , 2010, Journal of the American Chemical Society.

[87]  Charles R. Martin,et al.  FABRICATION AND EVALUATION OF NANOELECTRODE ENSEMBLES , 1995 .

[88]  Kevin Ke,et al.  Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. , 2006, Angewandte Chemie.

[89]  C. Boulin,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 2000 .

[90]  M. Sidorova,et al.  Filtration and electrokinetic characteristics of track membranes , 1998 .

[91]  Sergey M. Bezrukov,et al.  Counting polymers moving through a single ion channel , 1994, Nature.

[92]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[93]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.