Hot corrosion behavior and wettability of calcium–magnesium–alumina–silicate (CMAS) on LaTi2Al9O19 ceramic

[1]  Baopeng Zhang,et al.  Novel thermal barrier coatings repel and resist molten silicate deposits , 2019, Scripta Materialia.

[2]  Zhuo Wang,et al.  Effect of Al2O3 modification on the properties of YSZ: Corrosion resistant, wetting and thermal-mechanical properties , 2019, Surface and Coatings Technology.

[3]  R. Naraparaju,et al.  EB-PVD alumina (Al2O3) as a top coat on 7YSZ TBCs against CMAS/VA infiltration: Deposition and reaction mechanisms. , 2018 .

[4]  Cheng-Long Zhang,et al.  Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln=La, Nd) for thermal barrier coating applications , 2017 .

[5]  M. Khalil,et al.  Fabrication and properties of cordierite / anorthite composites , 2017 .

[6]  G. Goller,et al.  Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test , 2017 .

[7]  D. Dingwell,et al.  Volcanic ash melting under conditions relevant to ash turbine interactions , 2016, Nature Communications.

[8]  Hui Peng,et al.  Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium–magnesium–alumina–silicate (CMAS) attack , 2015 .

[9]  Hector F. Garces,et al.  In situ Raman spectroscopy studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits , 2014 .

[10]  A. L. Ortiz,et al.  CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions , 2014, Journal of Thermal Spray Technology.

[11]  U. Schulz,et al.  Degradation of la2zr2o7 and other novel eb-pvd thermal barrier coatings by cmas (cao-mgo-al2o3-sio2) and volcanic ash deposits , 2013 .

[12]  P. Spelt,et al.  Propagation of capillary waves and ejection of small droplets in rapid droplet spreading , 2012, Journal of Fluid Mechanics.

[13]  Xu Huibin,et al.  Hot Corrosion Behavior of Double-ceramic-layer LaTi2Al9O19/YSZ Thermal Barrier Coatings , 2012 .

[14]  Hongbo Guo,et al.  Lanthanum–titanium–aluminum oxide: A novel thermal barrier coating material for applications at 1300 °C , 2011 .

[15]  Julie M. Drexler,et al.  Jet Engine Coatings: Jet Engine Coatings for Resisting Volcanic Ash Damage (Adv. Mater. 21/2011) , 2011 .

[16]  Hongbo Guo,et al.  Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame , 2011 .

[17]  D. Stöver,et al.  Overview on advanced thermal barrier coatings , 2010 .

[18]  Hongbo Guo,et al.  Mechanical Properties of LaTi2Al9O19 and Thermal Cycling Behaviors of Plasma-Sprayed LaTi2Al9O19/YSZ Thermal Barrier Coatings , 2010 .

[19]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[20]  D. Wolfe,et al.  CMAS-Resistant Thermal Barrier Coatings (TBC) , 2009 .

[21]  L. Li,et al.  Failure of Thermal Barrier Coatings Subjected to CMAS Attack , 2009, International Thermal Spray Conference.

[22]  A. Evans,et al.  Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration , 2008 .

[23]  J. Yang,et al.  Infiltration‐Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts , 2008 .

[24]  Xinqing Ma,et al.  Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits , 2007 .

[25]  K. Prabhu,et al.  Review of non-reactive and reactive wetting of liquids on surfaces. , 2007, Advances in colloid and interface science.

[26]  J. Yang,et al.  Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits , 2006 .

[27]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[28]  Hongbo Guo,et al.  Development of gradient thermal barrier coatings and their hot-fatigue behavior , 2000 .

[29]  C. Lima,et al.  Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings , 1999 .

[30]  P Wright,et al.  Mechanisms governing the performance of thermal barrier coatings , 1999 .

[31]  T. Chow Wetting of rough surfaces , 1998 .

[32]  Yuichi Kobayashi,et al.  Low‐Temperature Fabrication of Anorthite Ceramics , 1994 .

[33]  Norbert Adolph Lange,et al.  Handbook of chemistry , 1944 .

[34]  Jihong Zhu,et al.  CMAS (CaO–MgO–Al2O3–SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers , 2018 .

[35]  C. Levi Emerging materials and processes for thermal barrier systems , 2004 .

[36]  F. Stott,et al.  The degradation resistance of thermal barrier coatings to molten deposits at very high temperatures , 1994 .

[37]  F. Stott,et al.  The effects of molten silicate deposits on the stability of thermal barrier coatings for turbine applications at very high temperatures , 1992 .

[38]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[39]  Robert A. Miller,et al.  Current status of thermal barrier coatings — An overview , 1987 .

[40]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .