Draw planes in R3 that are orthogonal to the x axis, and intersect the x axis at the points of a Poisson process with intensity λ; similarly, draw planes orthogonal to the y and z axes using independent Poisson processes (with the same intensity). Taken together, these planes naturally define a randomly stretched rectangular lattice. Consider bond percolation on this lattice where each edge of length is open with probability e−, and these events are independent given the edge lengths. We show that this model exhibits a phase transition: for large enough λ there is an infinite open cluster a.s., and for small λ all open clusters are finite a.s. We prove this result using the method of paths with exponential intersection tails, which is not applicable in two dimensions. The question whether the analogous process in the plane exhibits a phase transition is open. Disciplines Statistics and Probability This journal article is available at ScholarlyCommons: http://repository.upenn.edu/statistics_papers/434 ! " # $ $ &% '( )* %+ , -/.1032/45-/.1432/676 .14 8 9;:<0=2/432/4?>?.1676 @A9 B,CEDF2/9HG#@AI @A6 J 032/9;KL@MI76ON 4=PQD1@AI 6 PQR ST./U#V#@A:<0=4=.19W.1X/S(2F4=Y5Z*@M[=I7@A\]N*4=PWD/@MI76 PWR S^./U -/@AI C=6 2/9;@AK _3@M[=I7C32/I`S(aEbdc/e/e1e f*gEh7i`j<kmlni o#prqtsvuxwyqnzm{7| }~zO
xq qnp
{HApmnAnzxqnw
m{ q<}|`MqzxO}~zM
{7p|
{7 d
x{ q}y| q<
m{&u/n}yzM|dqO=n}||Az ump { |
|sH}~
}yzM
{7zx|}~ 1|}y}~wqpwynFmpqts5umwqzm{ |Hnp
mAnAzxqw
&m{qzx ¡q{7| ¢x|}yzm }~zxm{`u/{`zx{7zMH=A}y||
nzump {7||
{7|£QsH}¤*m{|
qn¡{¥}yzA{`zx|
}~¦ § ̈ qn©n{`z(
nA{ m{`p H
x{7|
{aumwqzx{7| zxq<¢mpqnw~wyT{ «Fzm{ q prqzxAw~T|
p{ rx{7Tp{7 qzxn¢mwqp wyq
} {A§ ¬ nzF|}{`p FAzx®u/{`pr Awyq
}ynz ̄nz®m}|,wq<
} {*sHx{`p{O{7qAr®{7A{O wy{`zmn
®°}| nu/{`z¡sH}¤¡uxp
Axqm}ywy}¤,±A2F3`Aqnzx
m{ |{{` ́A{`zM|3qnp
{}yzx{7uF{7zx{`zMdA}~ ́A{`z
m{H{ n{wy{`zmn
x|7§ μa{¥|m<svxq<
m}|d{`w/{ m}ym}~| q&umFqn|
{H
prqzx|
}~
}ynz ¶· ̧np wyqnp
A{H{`zmA¢mn*O
m{7p
{#}y| qz }~z«Fzm}¤{,AuF{7z wy¢x|{`p¥qm§ |`§yFqnzx$ ̧np|
qwywEaqwyw·AuF{7z wy¢x|{`pr| qp{«xzm}~
{¡qm§ |`§μ {,ump< ́n{
m}| p{7|
¢mw¤&¢F|}yzm
x{O{
x1 ̄n ox»<1⁄4 ̧1⁄2M3⁄4O¿3ÀÁ1⁄4 ̧1⁄2 Â
à oxÄ<Å/Â`Åx1⁄4;ÀQ»<Æ ÀÁÅx1⁄4Ç Èr3⁄4`ÂrÉ 1⁄4;ÀQÄ<Å 1⁄4Ê»ÀÁÆË3⁄4 =sHm}yr ̄}| zmqumumwy}`qxw~{ }~zÌs $}~{7zx|}ynzF|`§ ̈m{¡ÍA¢x{7|
}ynzsHm{`
m{7p¥
m{qzxqnw~AnA¢x|Hump {7||#}~z
m{ umwqzx{¥{`m}~x}¤r| q¡umxqn|
{¥
prqzx|
}~
}ynz$}y|AuF{7z § Î Ï ÐÑEÒ3ÓOÔÕ Ö Ñ3× Ó Ð ØdÙ<ÚÜÛÞÝàßáHâ ã äå=Ùvæèçé`æ1ê ë3ì&æí îðï ñòê ê=ómï Ù®Ú ë æ1Ú Ú ëòÙvÙîòçÙï ̄æ1é Ù^ô ̧æ1å=ÙôÁÙîöõ,÷ ̧Ú ë"ß;ê=ómï ï ÷Áå ôÁø îòÙ<ê=Ùí îòÙíFÚ7äOé`æí îòómùûú1æ1é`÷ ̧æ1å·ôÁÙïÌüýþnÿnþ #ìÚ æ /÷ ̧í çvú1æô ̧ñòÙï$÷ ̧í 1â TÙ <æô ̧ô¥Ú ëòÙ tómô ̧ôÁÙ tÚ ÷ ̧ómí üý þ ÿ þ Ú ëòÙ ! " # $mìæí î% tómí ï ÷ ̧îòÙ<é ÷ ̧í îòÙ<ê=Ùí îòÙíFÚ êEÙ<é& tómô ̧æ1Ú ÷Áómí3ì$ü ' þ ÿ þ( ìO÷Qí Ú ëòÙ é`æí î ómù Ùíxú1÷Áé ómí·ùÙíxÚüý þ ÿ) +* óé ÙOê é`Ù <÷ ̧ï ÙôÁøaõ#Ù*î óÚ ëòÙ-,WómôQôÁónõ,÷Qíòç/. 021 æ Ù*æÌï æùê·ôÁÙó3, Ú ëòÙOú1æ1é`÷ ̧æ1å ôÁÙï¡üý þ ÿ æ3 4 tóé7î ÷ ̧íòçÚ óaÚ ëòÙ÷Áé!5 óm÷ ̧íxÚ&î·÷ ̧ï Ú é`÷Áå ñòÚ ÷Áómí6 087 Ù<Ú Ùæ3 `ë ÙîòçÙóê=Ùíèß:9<;>=?;A@3ï Ù<ÚB' þ ÝC nä¥õ,÷ÁÚ ë ̄ê·é óå·æ1å·÷ ̧ôQ÷ÁÚøý þ æí î <ôÁómï Ùîèß:9D;D= ;Qì/' þ Ý xä óÚ ëòÙ<é õ,÷ ̧ï Ùì ÷ ̧í îòÙ<ê=Ùí îòÙíFÚ ôÁøE,;óé,æô ̧ô=ÙîòçÙï FHG # I # JLK<J M =4N¥Û ÝPORQTSVU WYX Z%[/;]\ ^ =VW =_=(`39 a N>aEbdcLe f_g(=4Wih·ßDX1äkjl ma&eLnV^]N>^#b3No9 Spb3c =VcIq?9>WrU cIfs=4cIN#üý þ ÿ þ( t#u aVb)ND9va>wx= a y z|{ ï ñ ê þ E} ý ~6 þ j8h·ßDX1ä(~6 y{
U Wb cLsU W 9<=4cIN= - b3N>^s9 c O Q b3c _b cI_n(U >A=(n ND9<U c]US8 9 a ND9>c n?N= #= a ü(1ÿ U cm+@ N>^ =pn(U W W = a /U c 9>cdq b W 9Dbg4A=VaOüý þD ÿ b W =9 c =/=4c =4cIN ; N>^ =4cb);aV;@6N>^/=VW == `)9vaVN>ab cE9>c wcI9>N=oU3W&9 =VcIN=(x/=4Wrn&U Ab3ND9DU3c n e#a N=4W ¡^9Dn4^9vaxNDWrb cLa&9 =VcIN3S4U W+a&9>f A= Wb c )U f¢ +b £ ; ß 1 ëòÙÌóé`÷ÁÙíFÚ Ùî <ô ̧ñ ï Ú Ù<é*ó3, æ®úÙ<é Ú ÙV¤ ¥^÷ ̧ïÚ ë ÙÌñ í ÷Áómí(ó3,æôQôHóê=ÙíTóé`÷ÁÙíFÚ Ùî(ê·æ1Ú ë·ïOÙùæí æ1Ú ÷Qíòç ,;é ómù¦¥I ~ä L JLK 9 q3=Vc j 2j @-n&U c/a&9<=4Wmb]Wb c )U f =4cLq?9>WU cLf_=VcINka4b3ND9va>S& 9>c N>^ = 9 c =:/=Vc =Vc n =n&U c 9DND9<U c dUrSpN>^ =_N>^ = U3W=4f@a&eLnV^
N>^#b3N _ ý þ Ý S4U W 1â Yb c ã;! S_X Z [ b c #" ßr %$ h·ßDX1ä ä(~64@EN>^/=Vc%b);aV;N>^ =VW = =(`39 a N>a]b NDWb c/a 9<=4cIN_U W 9<=4cIN= /=4Wrn&U b)ND9DU c n4 e#a N=VW4; T 6 '&)( } ý ~6 þ Ý * +-, ~6. , ~6 X , Ý/ 01ß1 2$ nä âï ó tómí î·÷ÁÚ ÷Áómí ß 3äë ómô ̧î ïOê·é ónú1÷ ̧îòÙîèÚ ë æ1Ú 2" ßr 4$ h ßDX/ä ä(~64 5 6 ómí·ï ÷ ̧îòÙ<é!X÷ ̧í îòÙ<ê=Ùí îòÙíFÚ87 óm÷ ̧ï ï ómí$ê=óm÷ ̧íFÚdê é ó tÙï ï Ùï õ,÷ ̧Ú ëOê·æ1é`æùÙ<Ú Ù<é 1 ëòÙX:9 ,WómôQî 6 æ1é`Ú Ù;9 ï ÷ ̧æíÜê é ó1î ñL tÚ ó3,Ú ëòÙï ÙOê=óm÷ ̧íFÚê é ó tÙï ï Ùï<ì·õ,÷ÁÚ ë®Ú ëòÙ ï Ú æí î æ1é`îÜê é ó1î ñL tÚ æî 5 æ3 tÙíL tø®é Ùô ̧æ1Ú ÷Áómídì ÷ ̧ï æ^çé`æ1ê·ë ÷ ̧ï ómùóé ê·ë ÷v Ú ó O Q Ú ë æ1Úõ#Ù ̄é Ù4,;Ù<éÚ ó(æïæ=< a NDW =4N n4^ = "Ab3N<ND9Dn =?> 7 Ù<Úæí ÙîòçÙ| ̄ó3, ôÁÙíòçÚ ëA@ þ óê=Ùíõ,÷ ̧Ú ëê é óå æ1å·÷ ̧ô ̧÷ÁÚ
ø*ý þ ÝðÙV¤/ê ßB$C@ þ ä7ì/÷ ̧í·îòÙ<ê=Ùí îòÙíFÚ ôÁø,;óé#æô ̧ô·ÙîòçÙï#çm÷ÁúÙíÌÚ ë Ù÷Áé ôÁÙíòçÚ ë·ï4 7 ÷QíL tÙD _ ýþ E ÝF _ @#þ ZûôÁóç ßr G0 ä Ý 1ì 6 óé ómôQô ̧æ1é ø IH5æ1ê ê·ô ̧÷ÁÙïÌÚ ó?Ú ë·÷ ̧ï ê é ó tÙï ï4 KJrí 7 Ù tÚ ÷Áómí [Ìõ¥Ù$ê é ónúÙL7é óê=ómï ÷ÁÚ ÷Áómí][# 1ì3õ,ë ÷ 7ëLÚ óçÙ<Ú ëòÙ<é*õ,÷ÁÚ ë 6 óé ómô ̧ô ̧æ1é`ø
IH/ì ÙïM9 Ú æ1å·ô ̧÷Qï ëòÙïÚ ë æ1Ú*Ú ë ÷ ̧ïê=Ù<é( tómô ̧æ1Ú ÷ ̧ómíTê é ó tÙï ïOë æï æ®ê·ë æï Ù;9Ú é`æí ï ÷ÁÚ ÷ ̧ómíT÷ ̧íN OJÚ*÷ ̧ïOíòóÚ /íòóAõ,í(÷A, ï ñL 7ëèæLê·ë æï ÙÚ é7æí ï ÷ÁÚ ÷Áómí(ó# 4 <ñòé7ïT,;óéHX^ÝPHèßÊï Ù<Ù 6 ómí 5 Ù tÚ ñòé Ùm[# IHmä& 7 Ù<ÙRQ·çmñ é Ù| å=ÙôÁóAõl,;óé æ^ê·÷ tÚ ñ é Ùaó3, Ú ë ÷ ̧ï ê é`ó# tÙï ï ÷ ̧íSH^î ÷QùÙí ï ÷Áómí·ï4 1 ë ÷ ̧ï$ê·÷ tÚ ñ é Ùaõæï ê é ó1î ñL tÙî ñ ï`÷ ̧íòç^ï ó3,WÚ
õ¥æ1é`Ù õ&é`÷ ̧Ú Ú Ùí®åFøT3 7 tómô ̧í ÷v tónú U WV X J (Y i [Z) W L$ > 8$ G \ ^])_! D " # a`? > a ' b`4$? $GZ G c_= /$ $ Z) Dd $ G ÝeHgfIh 1 ë ÙÜé Ùï Úó3,Ú ëòÙ ê·æ1ê=Ù<é÷ ̧ïóé çmæí·÷ji<Ùî æï,WómôQôÁónõ,ï 1 ëòÙ<óé Ùù L÷ ̧ïê é ónúÙîð÷ ̧í 7 Ù tÚ ÷ ̧ómí H?ú/÷QæèÚ ëòÙTùÙ<Ú ë ó/îðó3,*ê æ1Ú ë ï õ,÷ÁÚ ëek` /U c =Vc ND9Db l &c N=VW&a4= n?ND9DU3c \Ib39 a ß m J 1 ä& 1 ë ÷ ̧ï ùÙ<Ú ëòó1î õæï ÷QíxÚ é ó1î ñL tÙî ÷ ̧í 6 ó ¤ æí·îonñòé é`Ù<Ú Ú
ph æï ̄æèÚ ó/ómôi,Wóé å=ómñ í î ÷ ̧í ç té`÷ÁÚ ÷ <æô,ê é óå·æ1å·÷Qô ̧÷ÁÚ ÷ÁÙï<ì æí î(î Ù<úÙôÁóê=Ùî
,;ñòé`Ú ëòÙ<éåFø\q¥Ùí 5 æùÌ÷ ̧í ÷Çìr7 ÙùæíFÚ ôÁÙÌæí îs7 Ù<é Ùï ÷ ̧í2 [ ìdõ,ëòó®ñ ï ÙîT÷ÁÚÚ ó®ê é óAúÙ Ú é`æí ï`÷ÁÙíL tÙó3,óé`÷ÁÙíFÚ Ùî <ô ̧ñ ï Ú Ù<é`ïo,;óé,÷< ÷< î6 1ê=Ù<é( tómô ̧æ1Ú ÷ ̧ómí6 Jrí 7 Ù tÚ ÷Áómís[¡õ¥Ù&æí æôÁøgi<Ù Ú ëòÙR< ï Ú é Ù<Ú 7ëòÙîô ̧æ1Ú Ú ÷v tÙt>OùÙíFÚ ÷ÁómíòÙîæ1å=ónúÙì/æí î ÷ ̧í 7 Ù tÚ ÷Áómívuõ¥Ù î ÷ ̧ï( <ñ ï ïæíòóÚ ëòÙ<é&æ1ê ê ô ̧÷ <æ1Ú ÷Áómí ó3, Ú ë ÙÚ ëòÙ<óé Ùù Ú óê é óAúÙÚ ëòÙÙV¤ò÷ ̧ï Ú ÙíL tÙó3,æ ê ë æï ÙÚ é`æí ï ÷ ̧Ú ÷Áómí6
[1]
Rick Durrett,et al.
Oriented percolation in dimensions d ≥ 4: bounds and asymptotic formulas
,
1983,
Mathematical Proceedings of the Cambridge Philosophical Society.
[2]
Maury Bramson,et al.
The Contact Processes in a Random Environment
,
1991
.
[3]
Yu Zhang,et al.
Random walk on the infinite cluster of the percolation model
,
1993
.
[4]
Geoff K. Nicholls,et al.
Spontaneous Magnetization in the Plane
,
2001
.
[5]
Thomas M. Liggett,et al.
The Survival of One-Dimensional Contact Processes in Random Environments
,
1992
.
[6]
Elchanan Mossel,et al.
Nearest-neighbor walks with low predictability profile and percolation in 2 + ε dimensions
,
1998
.
[7]
Olle Häggström,et al.
Random-cluster representations in the study of phase transitions
,
1996
.
[8]
Béla Bollobás,et al.
Dependent percolation in two dimensions
,
2000
.
[9]
Abel Klein.
Multiscale Analysis in Disordered Systems: Percolation and contact process in a Random Environment
,
1994
.
[10]
P. Winkler.
Dependent percolation and colliding random walks
,
2000,
Random Struct. Algorithms.
[11]
P. Clifford,et al.
Point-based polygonal models for random graphs
,
1993,
Advances in Applied Probability.
[12]
Robin Pemantle,et al.
Unpredictable paths and percolation
,
1998
.
[13]
N. Biggs.
RANDOM WALKS AND ELECTRICAL NETWORKS (Carus Mathematical Monographs 22)
,
1987
.