Partition of kinetic energy and magnetic moment in dissipative diamagnetism

[1]  Aritra Ghosh,et al.  Partition of Free Energy for a Brownian Quantum Oscillator: Effect of Dissipation and Magnetic Field , 2022, SSRN Electronic Journal.

[2]  Aritra Ghosh,et al.  Quantum counterpart of energy equipartition theorem for fermionic systems , 2022, Journal of Statistical Mechanics: Theory and Experiment.

[3]  Aritra Ghosh,et al.  Quantum counterpart of energy equipartition theorem for a dissipative charged magneto-oscillator: Effect of dissipation, memory, and magnetic field. , 2021, Physical review. E.

[4]  J. Spiechowicz,et al.  Energy of a free Brownian particle coupled to thermal vacuum , 2021, Scientific Reports.

[5]  J. Łuczka Quantum Counterpart of Classical Equipartition of Energy , 2020, Journal of Statistical Physics.

[6]  J. Spiechowicz,et al.  On superstatistics of energy for a free quantum Brownian particle , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[7]  I. Abdurakhmanov,et al.  Open quantum system in external magnetic field within non-Markovian quantum Langevin approach , 2019, Physica A: Statistical Mechanics and its Applications.

[8]  J. Spiechowicz,et al.  Quantum partition of energy for a free Brownian particle: Impact of dissipation , 2018, Physical Review A.

[9]  J. Spiechowicz,et al.  Partition of energy for a dissipative quantum oscillator , 2018, Scientific Reports.

[10]  J. Spiechowicz,et al.  Quantum analogue of energy equipartition theorem , 2018, Journal of Physics A: Mathematical and Theoretical.

[11]  Jerzy Luczka,et al.  Kinetic Energy of a Free Quantum Brownian Particle , 2018, Entropy.

[12]  I. M. Sokolov,et al.  Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities , 2016, 1611.06202.

[13]  M. Bandyopadhyay,et al.  Quantum Brownian magneto-oscillator: Role of environmental spectrum and external magnetic field in decoherence and decay processes , 2015 .

[14]  H. Makela,et al.  Effects of the rotating wave and secular approximations on non-Markovianity , 2013, 1306.6301.

[15]  M. Bandyopadhyay Dissipative Cyclotron Motion of a Charged Quantum-Oscillator and Third Law , 2010 .

[16]  Carlo Sias,et al.  A trapped single ion inside a Bose–Einstein condensate , 2010, Nature.

[17]  S. Sinha,et al.  Dissipative quantum systems and the heat capacity. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  M. Bandyopadhyay Quantum thermodynamics of a charged magneto-oscillator coupled to a heat bath , 2009, 0906.1332.

[19]  S. Dattagupta,et al.  Low-temperature thermodynamics in the context of dissipative diamagnetism. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Peter Hänggi,et al.  Specific heat anomalies of open quantum systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Gert-Ludwig Ingold,et al.  Finite quantum dissipation: the challenge of obtaining specific heat , 2008, 0805.3974.

[22]  M. Bandyopadhyay Orbital magnetism of two-dimensional electron gas in a crossed electromagnetic field: the effect of spin–orbit interaction, confined geometries and defects , 2006 .

[23]  M. Bandyopadhyay,et al.  Landau–Drude diamagnetism: fluctuation, dissipation and decoherence , 2006, cond-mat/0605632.

[24]  P. Hānggi,et al.  QUANTUM BROWNIAN MOTION AND THE THIRD LAW OF THERMODYNAMICS , 2006, quant-ph/0601056.

[25]  M. Bandyopadhyay Dissipative tunnelling in 2DEG: effect of magnetic field, impurity and temperature , 2005, cond-mat/0511005.

[26]  M. Bandyopadhyay,et al.  Dissipative Diamagnetism—A Case Study for Equilibrium and Nonequilibrium Statistical Mechanics , 2005, cond-mat/0504230.

[27]  S. Dattagupta,et al.  Landau diamagnetism revisited , 2001, cond-mat/0106646.

[28]  G. W. Ford,et al.  Calculation of Correlation Functions in the Weak Coupling Approximation , 1999 .

[29]  S. Dattagupta,et al.  Landau Diamagnetism in a Dissipative and Confined System , 1997 .

[30]  S. Dattagupta,et al.  Stochastic motion of a charged particle in a magnetic field: II Quantum Brownian treatment , 1996 .

[31]  F. Sols,et al.  Translational symmetry and microscopic preparation in oscillator models of quantum dissipation , 1994 .

[32]  U. Weiss Quantum Dissipative Systems , 1993 .

[33]  R. Laughlin Quantized Hall conductivity in two dimensions , 1992 .

[34]  H. Friedrich,et al.  The hydrogen atom in a uniform magnetic field — An example of chaos , 1989 .

[35]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[36]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[37]  Rudolf Peierls,et al.  Surprises in Theoretical Physics , 1981 .

[38]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[39]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[40]  W. Bez,et al.  Microscopic preparation and macroscopic motion of a Brownian particle , 1980 .

[41]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[42]  G. W. Ford,et al.  Statistical Mechanics of Assemblies of Coupled Oscillators , 1965 .

[43]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[44]  L. Landau Diamagnetismus der Metalle , 1930 .

[45]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[46]  Sanjay Puri,et al.  Dissipative phenomena in condensed matter : some applications , 2004 .

[47]  Cyril Furtlehner,et al.  Three-dimensional spatial diffusion in optical molasses , 1995 .

[48]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[49]  G. Agarwal Quantum statistical theories of spontaneous emission and their relation to other approaches , 1974 .

[50]  G. V. Chester,et al.  Solid State Physics , 2000 .

[51]  E. C. S.,et al.  The Theory of Electric and Magnetic Susceptibilities , 1932, Nature.

[52]  G. W. FonDt Statistical Mechanics of Assemblies of Coupled Oscillators * , 2022 .