Strategies for solving index one DAE with non-negative constraints: Application to liquid-liquid extraction

Liquid-liquid extraction modeling leads to solve an index one DAE system. For the sake of robustness, it is desirable to account for non-negative constraints. Based on the DASSL architecture (a classical index one DAE solver) we propose and compare three different strategies to implement these bound constraints. Each of these strategies corresponds to a different Newton modification: clipping, damping, or interior point method. The comparisons are made on two test cases: the Robertson ODE problem, and an example from liquid-liquid extraction modeling.

[1]  Nathalie Di Miceli Raimondi Transfert de matière liquide-liquide en micro-canal : application à la réaction chimique , 2008 .

[2]  Piet J. van der Houwen,et al.  Parallel linear system solvers for Runge-Kutta methods , 1997, Adv. Comput. Math..

[3]  Walter M. Lioen,et al.  Test set for initial value problem solvers , 1998 .

[4]  Ludovic Métivier,et al.  Accounting robustly for instantaneous chemical equilibriums in reactive transport: A numerical method and its application to liquid-liquid extraction modeling , 2012, Comput. Chem. Eng..

[5]  W. K. Lewis,et al.  Principles of Gas Absorption. , 1924 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[7]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[8]  Adrian Sandu Positive numerical integration methods for chemical kinetic systems , 2001 .

[9]  D. Arnold,et al.  Computer Solution of Ordinary Differential Equations. , 1981 .

[10]  Francesca Mazzia,et al.  Test Set for Initial Value Problem Solvers , 2003 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[13]  Hans-Jörg Bart,et al.  LLECMOD: A Bivariate Population Balance Simulation Tool for Liquid- Liquid Extraction Columns , 2008 .

[14]  Michel Kern,et al.  A global strategy for solving reactive transport equations , 2009, J. Comput. Phys..

[15]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[16]  Lawrence F. Shampine,et al.  Non-negative solutions of ODEs , 2005, Appl. Math. Comput..

[17]  J. R. Cash,et al.  Review Paper: Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Stefania Bellavia,et al.  Constrained Dogleg methods for nonlinear systems with simple bounds , 2012, Comput. Optim. Appl..

[19]  Cecilia Magherini,et al.  Blended implicit methods for the numerical solution of DAE problems , 2006 .

[20]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[21]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[22]  Fred T. Krogh,et al.  Changing stepsize in the integration of differential equations using modified divided differences , 1974 .

[23]  D. R. Lewin,et al.  Modeling, simulation and control of liquid-liquid extraction columns , 1998 .

[24]  G. Psihoyios,et al.  Solving time dependent PDEs via an improved modified extended BDF scheme , 2007, Appl. Math. Comput..

[25]  P. J. van deHouwen,et al.  Parallel linear system solvers for Runge-Kutta methods , 1996 .

[26]  J. Lambert Computer Solution of Ordinary Differential Equations , 1976 .

[27]  Ron Sacks-Davis,et al.  An Alternative Implementation of Variable Step-Size Multistep Formulas for Stiff ODEs , 1980, TOMS.

[28]  L. Brugnano,et al.  Blended implicit methods for solving ODE and DAE problems, and their extension for second-order problems , 2007 .

[29]  Francesca Mazzia,et al.  Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques , 1998 .