Glucose-loaded liposomes for amplified colorimetric immunoassay of streptomycin based on enzyme-induced iron(II) chelation reaction with phenanthroline

[1]  Debin Zhu,et al.  Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. , 2018, Biosensors & bioelectronics.

[2]  S. Jeon,et al.  Colorimetric detection of penicillin G in milk using antibody-functionalized dendritic platinum nanoparticles , 2018 .

[3]  D. Tang,et al.  Liposome-amplified photoelectrochemical immunoassay for highly sensitive monitoring of disease biomarkers based on a split-type strategy. , 2018, Biosensors & bioelectronics.

[4]  D. Tang,et al.  Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB1 to Enhance Photocurrent of Mn2+-Doped Zn3(OH)2V2O7 Nanobelts. , 2017, Analytical chemistry.

[5]  A. Wiederkehr,et al.  Antibiotics induce mitonuclear protein imbalance but fail to inhibit respiration and nutrient activation in pancreatic &bgr;‐cells , 2017, Experimental cell research.

[6]  Hongyuan Chen,et al.  Enediol-Ligands-Encapsulated Liposomes Enables Sensitive Immunoassay: A Proof-of-Concept for General Liposomes-Based Photoelectrochemical Bioanalysis. , 2017, Analytical chemistry.

[7]  Minghui Yang,et al.  An ELISA for the determination of human IgG based on the formation of a colored iron(II) complex and photometric or visual read-out , 2017, Microchimica Acta.

[8]  Jin-Woo Oh,et al.  M-13 bacteriophage based structural color sensor for detecting antibiotics , 2017 .

[9]  Bing Zhang,et al.  Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection. , 2017, Biosensors & bioelectronics.

[10]  Qiong Hu,et al.  Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. , 2017, Analytica chimica acta.

[11]  Lei Wang,et al.  Target-controlled gating liposome "off-on" cascade amplification for sensitive and accurate detection of phospholipase D in breast cancer cells with a low-background signal. , 2016, Chemical communications.

[12]  Ning Gan,et al.  Ratiometric electrochemiluminescent aptasensor array for antibiotic based on internal standard method and spatial-resolved technique , 2016 .

[13]  Dan Du,et al.  Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout. , 2015, Biosensors & bioelectronics.

[14]  Jim A. Thomas,et al.  Tuning the excited state of water-soluble Ir(III)-based DNA intercalators that are isostructural with [Ru(II)(NN)2(dppz)] light-switch complexes. , 2015, Angewandte Chemie.

[15]  Xia Li,et al.  A high-efficiency white light-emitting lanthanide–organic framework assembled from 4,4′-oxybis(benzoic acid), 1,10-phenanthroline and oxalate , 2014 .

[16]  P. Lincoln,et al.  Thread insertion of a bis(dipyridophenazine) diruthenium complex into the DNA double helix by the extrusion of AT base pairs and cross-linking of DNA duplexes. , 2014, Angewandte Chemie.

[17]  Susana Campuzano,et al.  Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. , 2013, Biosensors & bioelectronics.

[18]  Huanghao Yang,et al.  Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. , 2013, Biosensors & bioelectronics.

[19]  Travis A. White,et al.  Efficient photocatalytic hydrogen production in a single-component system using Ru,Rh,Ru supramolecules containing 4,7-diphenyl-1,10-phenanthroline. , 2011, Angewandte Chemie.

[20]  Liguang Xu,et al.  Fluorescent strip sensor for rapid determination of toxins. , 2011, Chemical communications.

[21]  Juan Tang,et al.  Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. , 2010, Journal of agricultural and food chemistry.

[22]  Jonas Augusto Rizzato Paschoal,et al.  Development and validation of an LC-APCI-MS-MS analytical method for the determination of streptomycin and dihydrostreptomycin residues in milk. , 2009, Journal of chromatographic science.

[23]  Willem Haasnoot,et al.  Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. , 2009, Analytical chemistry.

[24]  A. Listorti,et al.  1,10-phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. , 2009, Chemical Society reviews.

[25]  Li Songyang,et al.  Simultaneous detection of sulfamethazine, streptomycin, and tylosin in milk by microplate-array based SMM-FIA , 2008 .

[26]  Suxia Zhang,et al.  Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. , 2006, Journal of agricultural and food chemistry.

[27]  Antje J Baeumner,et al.  Liposomes in analyses. , 2006, Talanta.

[28]  J. Ho,et al.  Procedures for preparing Escherichia coli O157:H7 immunoliposome and its application in liposome immunoassay. , 2003, Analytical chemistry.

[29]  Yueqing Zheng,et al.  Di- and trinuclear Co(II) phenanthroline complexes of suberic acid (H2L):[Co2(phen)2(H2O)2L2]·5H2O and {Co[Co(phen)(H2O)4]2L4/2}L·4H2O , 2003 .

[30]  J. Sessler,et al.  Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: efficient fluoride anion receptors. , 2002, Journal of the American Chemical Society.

[31]  N. Armaroli,et al.  Highly luminescent Cu(I)-phenanthroline complexes in rigid matrix and temperature dependence of the photophysical properties. , 2001, Journal of the American Chemical Society.

[32]  C T Elliott,et al.  Detection of streptomycin residues in whole milk using an optical immunobiosensor. , 2001, Journal of agricultural and food chemistry.

[33]  W. Witte,et al.  Medical Consequences of Antibiotic Use in Agriculture , 1998, Science.

[34]  Gokhan Yahioglu,et al.  1,10-Phenanthroline: a versatile ligand , 1994 .

[35]  V. Yaylayan,et al.  Reaction of reducing sugars with sulfathiazole and importance of this reaction to sulfonamide residue analysis using chromatographic, colorimetric, microbiological, or ELISA methods. , 1990 .

[36]  F. Szoka,et al.  Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.