A primer on deep learning in genomics

[1]  Ruibang Luo,et al.  A multi-task convolutional deep neural network for variant calling in single molecule sequencing , 2019, Nature Communications.

[2]  Christopher Y. Park,et al.  Whole-genome deep learning analysis reveals causal role of noncoding mutations in autism , 2018, bioRxiv.

[3]  Jun Cheng,et al.  Kipoi: accelerating the community exchange and reuse of predictive models for genomics , 2018, bioRxiv.

[4]  Diogo M. Camacho,et al.  Next-Generation Machine Learning for Biological Networks , 2018, Cell.

[5]  Jörg Hakenberg,et al.  Predicting the clinical impact of human mutation with deep neural networks , 2018, Nature Genetics.

[6]  Ghazaleh Khodabandelou,et al.  Genome Functional Annotation using Deep Convolutional Neural Networks , 2018, bioRxiv.

[7]  Chandra L. Theesfeld,et al.  Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk , 2018, Nature Genetics.

[8]  R. Jiang,et al.  Prediction of enhancer-promoter interactions via natural language processing , 2018, BMC Genomics.

[9]  Michael C. Schatz,et al.  Skyhawk: An Artificial Neural Network-based discriminator for reviewing clinically significant genomic variants , 2018, bioRxiv.

[10]  Michael C. Schatz,et al.  Clairvoyante: a multi-task convolutional deep neural network for variant calling in Single Molecule Sequencing , 2018, bioRxiv.

[11]  M. DePristo,et al.  Deep learning of genomic variation and regulatory network data. , 2018, Human molecular genetics.

[12]  James Zou,et al.  Feedback GAN (FBGAN) for DNA: a Novel Feedback-Loop Architecture for Optimizing Protein Functions , 2018, ArXiv.

[13]  Haohan Wang,et al.  Deep Learning for Genomics: A Concise Overview , 2018, ArXiv.

[14]  W. Chung,et al.  MVP: predicting pathogenicity of missense variants by deep learning , 2018, bioRxiv.

[15]  Sarah Webb Deep learning for biology , 2018, Nature.

[16]  Chuang Ma,et al.  DeepGS: Predicting phenotypes from genotypes using Deep Learning , 2017, bioRxiv.

[17]  Yi Pan,et al.  A deep learning method for lincRNA detection using auto-encoder algorithm , 2017, BMC Bioinformatics.

[18]  Padideh Danaee,et al.  A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential , 2017, bioRxiv.

[19]  R. Paffenroth,et al.  Boosting Gene Expression Clustering with System-Wide Biological Information: A Robust Autoencoder Approach , 2017, bioRxiv.

[20]  Xinghua Shi,et al.  A deep auto-encoder model for gene expression prediction , 2017, BMC Genomics.

[21]  Ning Chen,et al.  Predicting enhancers with deep convolutional neural networks , 2017, BMC Bioinformatics.

[22]  James Y. Zou,et al.  Interpretation of Neural Networks is Fragile , 2017, AAAI.

[23]  Nicola J. Rinaldi,et al.  Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease , 2017, Nature Genetics.

[24]  Minh Duc Cao,et al.  Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning , 2017, bioRxiv.

[25]  Z. Bar-Joseph,et al.  Using neural networks for reducing the dimensions of single-cell RNA-Seq data , 2017, Nucleic acids research.

[26]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[27]  Joshua E. Lewis,et al.  Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models , 2017, Scientific Reports.

[28]  Ilia Korvigo,et al.  Generalising better: Applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies , 2017, bioRxiv.

[29]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[30]  Yoseph Barash,et al.  Integrative deep models for alternative splicing , 2017, bioRxiv.

[31]  William Stafford Noble,et al.  Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture , 2017, bioRxiv.

[32]  Avanti Shrikumar,et al.  Reverse-complement parameter sharing improves deep learning models for genomics , 2017, bioRxiv.

[33]  Cory Y. McLean,et al.  Creating a universal SNP and small indel variant caller with deep neural networks , 2016, bioRxiv.

[34]  Yi Shi,et al.  DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations , 2016, BMC Bioinformatics.

[35]  L. Stirling Churchman,et al.  FIDDLE: An integrative deep learning framework for functional genomic data inference , 2016, bioRxiv.

[36]  Jun Zhao,et al.  Removal of batch effects using distribution‐matching residual networks , 2016, Bioinform..

[37]  Remi Torracinta,et al.  Adaptive Somatic Mutations Calls with Deep Learning and Semi-Simulated Data , 2016, bioRxiv.

[38]  Beilun Wang,et al.  Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks , 2016, PSB.

[39]  O. Stegle,et al.  Deep learning for computational biology , 2016, Molecular systems biology.

[40]  R. Tripathi,et al.  DeepLNC, a long non-coding RNA prediction tool using deep neural network , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[41]  David K. Gifford,et al.  Convolutional neural network architectures for predicting DNA–protein binding , 2016, Bioinform..

[42]  O. Stegle,et al.  DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning , 2016, Genome Biology.

[43]  Xiaochen Bo,et al.  PEDLA: predicting enhancers with a deep learning-based algorithmic framework , 2016, Scientific Reports.

[44]  Tomáš Vinař,et al.  DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads , 2016, PloS one.

[45]  W. Wasserman,et al.  Genome-wide prediction of cis-regulatory regions using supervised deep learning methods , 2016, BMC Bioinformatics.

[46]  Marco Tulio Ribeiro,et al.  “Why Should I Trust You?”: Explaining the Predictions of Any Classifier , 2016, NAACL.

[47]  C. Greene,et al.  ADAGE-Based Integration of Publicly Available Pseudomonas aeruginosa Gene Expression Data with Denoising Autoencoders Illuminates Microbe-Host Interactions , 2016, mSystems.

[48]  Xinghua Lu,et al.  Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model , 2016, BMC Bioinformatics.

[49]  Xiaohui S. Xie,et al.  DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences , 2015, bioRxiv.

[50]  A. Subramanian,et al.  Gene expression inference with deep learning , 2015, bioRxiv.

[51]  David R. Kelley,et al.  Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks , 2015, bioRxiv.

[52]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[53]  Manolis Kellis,et al.  Deep learning for regulatory genomics , 2015, Nature Biotechnology.

[54]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[55]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[56]  Yifei Chen,et al.  DANN: a deep learning approach for annotating the pathogenicity of genetic variants , 2015, Bioinform..

[57]  V. Bajic,et al.  DEEP: a general computational framework for predicting enhancers , 2014, Nucleic acids research.

[58]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[59]  David M. W. Powers,et al.  Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation , 2011, ArXiv.

[60]  Geoffrey E. Hinton,et al.  This PDF file includes: Materials and Methods , 2009 .

[61]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[62]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .

[63]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[64]  Geoffrey E. Hinton,et al.  Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks , 2006 .