Inducing drop to bubble transformation via resonance in ultrasound

[1]  D. Zang,et al.  Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions. , 2017, Advances in colloid and interface science.

[2]  Lixin Li,et al.  Liquid Marble Coalescence and Triggered Microreaction Driven by Acoustic Levitation. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[3]  D. Zang,et al.  Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound , 2017 .

[4]  S. Basu,et al.  Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating. , 2016, Physical review. E.

[5]  Lin Pc Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding. , 2016 .

[6]  L. I,et al.  Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding. , 2016, Physical Review E.

[7]  Jun Li,et al.  Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[8]  Xiaopeng Zhao,et al.  The anomalous manipulation of acoustic waves based on planar metasurface with split hollow sphere , 2015 .

[9]  Nicolas Perez,et al.  Particle manipulation by a non-resonant acoustic levitator , 2015 .

[10]  Pablo Juliano,et al.  Separation of suspensions and emulsions via ultrasonic standing waves - a review. , 2014, Ultrasonics sonochemistry.

[11]  J. Venzmer,et al.  Droplet-air collision dynamics: evolution of the film thickness. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  N. Bhatnagar,et al.  Ultrasound assisted cyclic solid-state foaming for fabricating ultra-low density porous acrylonitrile–butadiene–styrene foams , 2013 .

[13]  Mikael Evander,et al.  Acoustofluidics 20: applications in acoustic trapping. , 2012, Lab on a chip.

[14]  J. Adamowski,et al.  Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations , 2012 .

[15]  Shen Chang-Le,et al.  Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop , 2011 .

[16]  Kamel Fezzaa,et al.  Size limits the formation of liquid jets during bubble bursting , 2011, Nature communications.

[17]  Howard A. Stone,et al.  Daughter bubble cascades produced by folding of ruptured thin films , 2010, Nature.

[18]  H. Stone,et al.  The role of surface rheology in liquid film formation , 2010 .

[19]  Daeyeon Lee,et al.  Microfluidic fabrication of stable nanoparticle-shelled bubbles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  E. Villermaux,et al.  Single-drop fragmentation determines size distribution of raindrops , 2009 .

[21]  N. Vandewalle,et al.  Antibubbles, liquid onions and bouncing droplets , 2009 .

[22]  H. Stone,et al.  Dynamics of the formation of antibubbles , 2008 .

[23]  D. Langevin,et al.  On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. , 2008, Soft matter.

[24]  S. G. Gaikwad,et al.  Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. , 2008, Ultrasonics sonochemistry.

[25]  D. Quéré,et al.  Bouncing Bubbles , 2007 .

[26]  E. Reyssat,et al.  Shape and instability of free-falling liquid globules , 2007 .

[27]  F. Müller,et al.  Experimental study of the bursting of inviscid bubbles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Emilio Quaia,et al.  Microbubble ultrasound contrast agents: an update , 2007, European Radiology.

[29]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[30]  W. Xie,et al.  Dynamics of acoustically levitated disk samples. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  W. J. Xie,et al.  Parametric study of single-axis acoustic levitation , 2001 .

[32]  S. Chaieb,et al.  Rippling instability of a collapsing bubble , 2000, Science.

[33]  P. Gennes The Physics Of Foams , 1999 .

[34]  Brochard-Wyart,et al.  The life and death of "Bare" viscous bubbles , 1998, Science.

[35]  C. P. Lee,et al.  STATIC SHAPE OF AN ACOUSTICALLY LEVITATED DROP WITH WAVE-DROP INTERACTION , 1994 .

[36]  J. L. Robey,et al.  Experimental study of streaming flows associated with ultrasonic levitators , 1994 .

[37]  S. D. Danilov,et al.  Breakup of a droplet in a high-intensity sound field , 1992 .

[38]  C. P. Lee,et al.  Static shape and instability of an acoustically levitated liquid drop , 1991 .

[39]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  K. Johnson An Update. , 1984, Journal of food protection.

[41]  H. Saunders,et al.  Fundamentals of Acoustics (3rd Ed.) , 1983 .

[42]  Fred E. C. Culick,et al.  Comments on a Ruptured Soap Film , 1960 .

[43]  Geoffrey Ingram Taylor,et al.  The dynamics of thin sheets of fluid II. Waves on fluid sheets , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[45]  Louis Vessot King,et al.  On the Acoustic Radiation Pressure on Spheres , 1934 .