The Faddeev–Jackiw Approach and the Conformal Affine sl(2) Toda Model Coupled to the Matter Field
暂无分享,去创建一个
[1] G. Takács,et al. Non-unitarity in quantum affine Toda theory and perturbed conformal field theory , 1998, hep-th/9810006.
[2] J. Klauder,et al. Solving Gauge Invariant Systems without Gauge Fixing: The Physical Projector in 0+1 Dimensional Theories , 1998, hep-th/9809119.
[3] J. Pons,et al. Equivalence of Faddeev–Jackiw and Dirac Approaches for Gauge Theories , 1996, hep-th/9610067.
[4] L. A. Ferreira,et al. Affine Toda systems coupled to matter fields , 1995, hep-th/9512105.
[5] C. Wotzasek. Faddeev-Jackiw approach to hidden symmetries , 1995, hep-th/9502042.
[6] M. Noga,et al. First-order Lagrangians and the Hamiltonian formalism , 1994 .
[7] C. Wotzasek,et al. Faddeev-Jackiw Quantization of Non-Abelian Systems , 1993 .
[8] H. Montani. SYMPLECTIC ANALYSIS OF CONSTRAINED SYSTEMS , 1993 .
[9] L. A. Ferreira,et al. Hirota's solitons in the affine and the conformal affine Toda models , 1992, hep-th/9212086.
[10] L. A. Ferreira,et al. Connection between the affine and conformal affine Toda models and their Hirota solution , 1992, hep-th/9207061.
[11] J. Barcelos-Neto,et al. SYMPLECTIC QUANTIZATION OF CONSTRAINED SYSTEMS , 1992 .
[12] J. Govaerts. HAMILTONIAN REDUCTION OF FIRST-ORDER ACTIONS , 1990 .
[13] L. Bonora,et al. Conformal affine sl2 Toda field theory , 1990 .
[14] R. Jackiw,et al. Hamiltonian reduction of unconstrained and constrained systems. , 1988, Physical review letters.
[15] W. Siegel. Manifest Lorentz invariance sometimes requires non-linearity☆ , 1984 .
[16] E. Witten. Chiral symmetry, the 1/N expansion and the SU(N) thirring model , 1978 .
[17] D. Olive,et al. Magnetic monopoles as gauge particles , 1977 .
[18] S. Orfanidis,et al. Soliton solutions of the massive thirring model , 1975 .
[19] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[20] R. E. Casten,et al. Nuclear Physics , 1935, Nature.