Archaeal DNA replication and repair: new genetic, biophysical and molecular tools for discovering and characterizing enzymes, pathways and mechanisms.

DNA replication and repair are essential biological processes needed for the survival of all organisms. Although these processes are fundamentally conserved in the three domains, archaea, bacteria and eukarya, the proteins and complexes involved differ. The genetic and biophysical tools developed for archaea in the last several years have accelerated the study of DNA replication and repair in this domain. In this review, the current knowledge of DNA replication and repair processes in archaea will be summarized, with emphasis on the contribution of genetics and other recently developed biophysical and molecular tools, including capillary gel electrophoresis, next-generation sequencing and single-molecule approaches. How these new tools will continue to drive archaeal DNA replication and repair research will also be discussed.

[1]  M. Adams,et al.  Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases , 2011, Applied and Environmental Microbiology.

[2]  Z. Kelman,et al.  Thermococcus kodakarensis encodes three MCM homologs but only one is essential , 2011, Nucleic acids research.

[3]  Boris G. Mirkin,et al.  Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell , 2005, Nucleic acids research.

[4]  G. Wilson Organization of restriction-modification systems. , 1991, Nucleic acids research.

[5]  Z. Kelman,et al.  Do Archaea Need an Origin of Replication? , 2017, Trends in Microbiology.

[6]  Nicholas E. Dixon,et al.  Replicative DNA polymerases. , 2013, Cold Spring Harbor perspectives in biology.

[7]  Kin-Fan Au,et al.  PacBio Sequencing and Its Applications , 2015, Genom. Proteom. Bioinform..

[8]  H. Daiyasu,et al.  Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis , 2012, Genes to cells : devoted to molecular & cellular mechanisms.

[9]  H. Daiyasu,et al.  Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[10]  Mary E. Miller,et al.  Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System , 2014, Genetics.

[11]  M. Botchan,et al.  Mechanisms and regulation of DNA replication initiation in eukaryotes , 2017, Critical reviews in biochemistry and molecular biology.

[12]  Jerard Hurwitz,et al.  Crystal structures of two active proliferating cell nuclear antigens (PCNAs) encoded by Thermococcus kodakaraensis , 2011, Proceedings of the National Academy of Sciences.

[13]  Z. Kelman,et al.  Unwinding the structure and function of the archaeal MCM helicase , 2009, Molecular microbiology.

[14]  Joanna Bybee,et al.  Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes , 2015, Nucleic acids research.

[15]  Y. Ishino,et al.  Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication , 2016, Nucleic acids research.

[16]  Travis H. Hileman,et al.  A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein , 2014, Nucleic acids research.

[17]  T. Fukui,et al.  Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. , 2005, Genome research.

[18]  S. MacNeill,et al.  Structure and function of the GINS complex, a key component of the eukaryotic replisome. , 2010, The Biochemical journal.

[19]  E V Koonin,et al.  Phosphoesterase domains associated with DNA polymerases of diverse origins. , 1998, Nucleic acids research.

[20]  J. W. Picking,et al.  Genetic techniques for the archaea. , 2013, Annual review of genetics.

[21]  B. Stillman,et al.  Principles and concepts of DNA replication in bacteria, archaea, and eukarya. , 2013, Cold Spring Harbor perspectives in biology.

[22]  Dongwan D. Kang,et al.  The Epigenomic Landscape of Prokaryotes , 2016, PLoS genetics.

[23]  Z. Kelman,et al.  Archaeal DNA Polymerase D but Not DNA Polymerase B Is Required for Genome Replication in Thermococcus kodakarensis , 2013, Journal of bacteriology.

[24]  T. Boulikas,et al.  Common structural features of replication origins in all life forms , 1996, Journal of cellular biochemistry.

[25]  S. Onesti,et al.  Structure and evolutionary origins of the CMG complex , 2013, Chromosoma.

[26]  P. Kenis,et al.  Comparative Analyses , 2020, Institutional Responses to Drug Demand in Central Europe.

[27]  Daniel L. Vera,et al.  Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq , 2018, Nature Protocols.

[28]  A. Camilli,et al.  Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms , 2009, Nature Methods.

[29]  J. van der Oost,et al.  The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 , 2015, Extremophiles.

[30]  M. DePamphilis 2 Origins of DNA Replication , 1996 .

[31]  Z. Kelman,et al.  Characterization of DNA Primase Complex Isolated from the Archaeon, Thermococcus kodakaraensis* , 2012, The Journal of Biological Chemistry.

[32]  J. Reeve,et al.  Chromosome packaging by archaeal histones. , 2001, Advances in applied microbiology.

[33]  Antoine M. van Oijen,et al.  Single-molecule studies of the replisome. , 2010, Annual review of biophysics.

[34]  W. Metcalf,et al.  Genetic manipulation of Methanosarcina spp. , 2012, Front. Microbio..

[35]  H. Myllykallio,et al.  The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? , 2007, Journal of molecular biology.

[36]  Friedrich Lottspeich,et al.  An exosome‐like complex in Sulfolobus solfataricus , 2003, EMBO reports.

[37]  M. O’Donnell,et al.  The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  Y. Ishino,et al.  The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis , 2017, Nucleic acids research.

[39]  Kevin A. Fiala,et al.  Pre-steady-state kinetic studies of the fidelity of human DNA polymerase mu. , 2004, Biochemistry.

[40]  P. Forterre,et al.  In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  F. J. López de Saro Regulation of Interactions with Sliding Clamps During DNA Replication and Repair , 2009, Current genomics.

[42]  S. Jentsch,et al.  PCNA, the Maestro of the Replication Fork , 2007, Cell.

[43]  M. O’Donnell,et al.  Evolution of replication machines , 2016, Critical reviews in biochemistry and molecular biology.

[44]  K. Skarstad,et al.  Regulating DNA replication in bacteria. , 2013, Cold Spring Harbor perspectives in biology.

[45]  Z. Kelman,et al.  Archaeal DNA replication. , 2014, Annual review of genetics.

[46]  Alessandro Costa,et al.  Structural biology of MCM helicases , 2009, Critical reviews in biochemistry and molecular biology.

[47]  Margaret R. Heider,et al.  Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea , 2017, The Journal of Biological Chemistry.

[48]  S. Bell DNA replication: archaeal oriGINS , 2011, BMC Biology.

[49]  L. Prakash,et al.  Interaction with PCNA is essential for yeast DNA polymerase eta function. , 2001, Molecular cell.

[50]  G. Tell,et al.  Base excision repair in Archaea: back to the future in DNA repair. , 2014, DNA repair.

[51]  M. Dyall-Smith,et al.  Construction and analysis of a recombination‐deficient (radA) mutant of Haloferax volcanii , 1997, Molecular microbiology.

[52]  K. Eckert,et al.  Eukaryotic Replicative DNA Polymerases , 2014 .

[53]  Jan Mrázek,et al.  Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis , 2013, Proceedings of the National Academy of Sciences.

[54]  Z. Kelman,et al.  Affinity Purification of an Archaeal DNA Replication Protein Network , 2010, mBio.

[55]  Eugene V Koonin,et al.  The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes , 2012, Biology Direct.

[56]  Y. Kawarabayasi,et al.  Three Proliferating Cell Nuclear Antigen-Like Proteins Found in the Hyperthermophilic Archaeon Aeropyrum pernix: Interactions with the Two DNA Polymerases , 2002, Journal of bacteriology.

[57]  P. Forterre,et al.  Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis. , 2010, Genes & genetic systems.

[58]  Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability , 2013, Extremophiles.

[59]  N. Tanner,et al.  Visualizing DNA replication at the single-molecule level. , 2010, Methods in enzymology.

[60]  Erbay Yigit,et al.  A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome , 2015, BMC Genomics.

[61]  K. Moore,et al.  An alternative beads‐on‐a‐string chromatin architecture in Thermococcus kodakarensis , 2013, EMBO reports.

[62]  Z. Kelman The replication origin of archaea is finally revealed. , 2000, Trends in biochemical sciences.

[63]  M. Washington,et al.  PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA. , 2012, Sub-cellular biochemistry.

[64]  Margaret R. Heider,et al.  The GAN Exonuclease or the Flap Endonuclease Fen1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis , 2017, Journal of bacteriology.

[65]  H. Atomi,et al.  Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. , 2011, FEMS microbiology reviews.

[66]  D. MacAlpine,et al.  DNA replication origins—where do we begin? , 2016, Genes & development.

[67]  Kevin A. Fiala,et al.  Pre-steady-state kinetic studies of the fidelity of Sulfolobus solfataricus P2 DNA polymerase IV. , 2004, Biochemistry.

[68]  Stephen D. Bell,et al.  DNA Replication in the Archaea , 2006, Microbiology and Molecular Biology Reviews.

[69]  Z. Kelman,et al.  High-temperature single-molecule kinetic analysis of thermophilic archaeal MCM helicases , 2016, Nucleic acids research.

[70]  Gary D Bader,et al.  Chromatin is an ancient innovation conserved between Archaea and Eukarya , 2012, eLife.

[71]  M. DePamphilis DNA replication in eukaryotic cells , 1996 .

[72]  Z. Kelman,et al.  The diverse spectrum of sliding clamp interacting proteins , 2003, FEBS letters.

[73]  C. Lange,et al.  Genome Copy Numbers and Gene Conversion in Methanogenic Archaea , 2010, Journal of bacteriology.

[74]  P. DasSarma,et al.  Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1 , 2007, BMC Genetics.

[75]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[76]  M. Botchan,et al.  Mechanisms for initiating cellular DNA replication , 2017, Science.

[77]  S. Bell,et al.  A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. , 2003, Molecular cell.

[78]  Z. Kelman,et al.  ARCHAEAL DNA REPLICATION: Eukaryal , 2003 .

[79]  C. Pittenger,et al.  Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene , 1995, Journal of bacteriology.

[80]  Conrad A. Nieduszynski,et al.  Accelerated growth in the absence of DNA replication origins , 2013, Nature.

[81]  Academic Excellence Accelerated Growth , 2020, Definitions.

[82]  G. Fan,et al.  DNA Methylation and Its Basic Function , 2013, Neuropsychopharmacology.

[83]  Byung-Kwan Cho,et al.  Genome-wide primary transcriptome analysis of H2-producing archaeon Thermococcus onnurineus NA1 , 2017, Scientific Reports.

[84]  Z. D. Blount,et al.  The unexhausted potential of E. coli , 2015, eLife.

[85]  T. Kunkel,et al.  RNase H2-initiated ribonucleotide excision repair. , 2012, Molecular cell.

[86]  K. Komori,et al.  Copyright © 1998, American Society for Microbiology A Novel DNA Polymerase Family Found in Archaea , 1997 .

[87]  H. Toh,et al.  A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Z. Kelman,et al.  The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation* , 2015, The Journal of Biological Chemistry.

[89]  Z. Kelman,et al.  The archaeal PCNA proteins. , 2011, Biochemical Society transactions.

[90]  D. Kohda,et al.  Archaeal primase bridging the gap between RNA and DNA polymerases , 2001, Current Biology.

[91]  Haruyuki Atomi,et al.  Overview of the genetic tools in the Archaea , 2012, Front. Microbio..

[92]  B. Stillman,et al.  A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Travis H. Hileman,et al.  Genetics Techniques for Thermococcus kodakarensis , 2012, Front. Microbio..

[94]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[95]  Konrad U. Förstner,et al.  Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis , 2014, BMC Genomics.

[96]  Z. Kelman,et al.  The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Bell,et al.  The promiscuous primase. , 2005, Trends in genetics : TIG.

[98]  R. Crouch,et al.  The Balancing Act of Ribonucleotides in DNA. , 2016, Trends in biochemical sciences.

[99]  A. F. Gardner,et al.  Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance* , 2015, The Journal of Biological Chemistry.

[100]  D. Patel,et al.  Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. , 2008, Trends in biochemical sciences.

[101]  Francisco J. López de Saro,et al.  Regulation of Interactions with Sliding Clamps During DNA Replication and Repair , 2009 .

[102]  M. Wagner,et al.  Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius , 2012, Front. Microbio..

[103]  E. Koonin,et al.  GINS, a central nexus in the archaeal DNA replication fork , 2006, EMBO reports.

[104]  Z. Kelman,et al.  Genome Replication in Thermococcus kodakarensis Independent of Cdc6 and an Origin of Replication , 2017, Front. Microbiol..

[105]  M. F. White Homologous recombination in the archaea: the means justify the ends. , 2011, Biochemical Society transactions.

[106]  Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis , 2012, Extremophiles.

[107]  M. F. White,et al.  Archaeal DNA replication and repair. , 2005, Current opinion in microbiology.

[108]  Jonathan A Eisen,et al.  Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii , 2007, PLoS genetics.