Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images

Abstract We used spectral, textural and photogrammetric information from very-high resolution (VHR) stereo satellite data (Pléiades and WorldView-2) to estimate forest biomass across two test sites located in Chile and Germany. We compared Random Forest model performances of different predictor sets (spectral, textural, and photogrammetric), forest inventory designs and filter sizes (texture information). Best model performances were obtained with photogrammetric combined with either textural or spectral information and smaller, but more field plots. Stereo-VHR images showed a great potential for canopy height model (CHM) generation and could be an adequate alternative to LiDAR and InSAR techniques.

[1]  P. Gessler,et al.  Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA , 2009 .

[2]  José Cristóbal Riquelme Santos,et al.  A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study , 2011, HAIS.

[3]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[4]  Sandra Eckert,et al.  Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data , 2012, Remote. Sens..

[5]  Peter Annighöfer,et al.  Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forests of Northern Italy , 2012, European Journal of Forest Research.

[6]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[7]  Emilio Chuvieco,et al.  Aboveground biomass assessment in Colombia: a remote sensing approach. , 2009 .

[8]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[9]  Lars T. Waser,et al.  Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality , 2014, Remote. Sens..

[10]  Barbara Koch,et al.  Mapping forest biomass from space - Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Raisa Mäkipää,et al.  Biomass and stem volume equations for tree species in Europe , 2005, Silva Fennica Monographs.

[12]  P. Reinartz,et al.  Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany , 2013 .

[13]  J. Eastman,et al.  Long sequence time series evaluation using standardized principal components , 1993 .

[14]  Arnon Karnieli,et al.  redicting forest structural parameters using the image texture derived from orldView-2 multispectral imagery in a dryland forest , Israel , 2011 .

[15]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[16]  Y. Hu,et al.  Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .

[17]  M. Galleguillos,et al.  Presencia, abundancia y asociatividad de Citronella mucronata en bosques secundarios de Nothofagus obliqua en la precordillera de Curicó, región del Maule, Chile , 2014 .

[18]  B. Koch,et al.  TREESVIS-A SOFTWARE SYSTEM FOR SIMULTANEOUS 3 D-REAL-TIME VISUALISATION OF DTM , DSM , LASER RAW DATA , MULTISPECTRAL DATA , SIMPLE TREE AND BUILDING MODELS , 2004 .

[19]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[20]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .

[21]  Florian Hartig,et al.  Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass , 2014 .

[22]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .

[23]  M. Batistella,et al.  Satellite estimation of aboveground biomass and impacts of forest stand structure , 2005 .

[24]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[25]  W. Salas,et al.  Secondary Forest Age and Tropical Forest Biomass Estimation Using Thematic Mapper Imagery , 2000 .

[26]  Feng Zhao,et al.  Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR , 2014, Remote. Sens..

[27]  Ali Shamsoddini,et al.  Pine plantation structure mapping using WorldView-2 multispectral image , 2013 .

[28]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[29]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[30]  Alexandre Carleer,et al.  Exploitation of Very High Resolution Satellite Data for Tree Species Identification , 2004 .

[31]  Agostino Di Ciaccio,et al.  Computational Statistics and Data Analysis Measuring the Prediction Error. a Comparison of Cross-validation, Bootstrap and Covariance Penalty Methods , 2022 .

[32]  Biao Cao,et al.  Experiment on extracting forest canopy height from Worldview-2 , 2011, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[33]  S. Reutebuch,et al.  Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy , 2005 .

[34]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[35]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[36]  Kenneth E. Skog,et al.  An outlook for sustainable forest bioenergy production in the Lake States , 2009 .

[37]  Lori M. Bruce,et al.  Why principal component analysis is not an appropriate feature extraction method for hyperspectral data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[38]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .