Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images
暂无分享,去创建一个
Fabian Ewald Fassnacht | Barbara Koch | Jaime Hernández | Teja Kattenborn | Joachim Maack | Patricio Corvalán | Fabian Enßle | B. Koch | F. Fassnacht | T. Kattenborn | Jaime Hernández | P. Corvalán | Joachim Maack | Fabian Enssle | J. Hernández
[1] P. Gessler,et al. Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA , 2009 .
[2] José Cristóbal Riquelme Santos,et al. A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study , 2011, HAIS.
[3] R. Dubayah,et al. Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .
[4] Sandra Eckert,et al. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data , 2012, Remote. Sens..
[5] Peter Annighöfer,et al. Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forests of Northern Italy , 2012, European Journal of Forest Research.
[6] Barbara Koch,et al. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .
[7] Emilio Chuvieco,et al. Aboveground biomass assessment in Colombia: a remote sensing approach. , 2009 .
[8] R. Reulke,et al. Remote Sensing and Spatial Information Sciences , 2005 .
[9] Lars T. Waser,et al. Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality , 2014, Remote. Sens..
[10] Barbara Koch,et al. Mapping forest biomass from space - Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models , 2015, Int. J. Appl. Earth Obs. Geoinformation.
[11] Raisa Mäkipää,et al. Biomass and stem volume equations for tree species in Europe , 2005, Silva Fennica Monographs.
[12] P. Reinartz,et al. Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany , 2013 .
[13] J. Eastman,et al. Long sequence time series evaluation using standardized principal components , 1993 .
[14] Arnon Karnieli,et al. redicting forest structural parameters using the image texture derived from orldView-2 multispectral imagery in a dryland forest , Israel , 2011 .
[15] Göran Ståhl,et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .
[16] Y. Hu,et al. Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .
[17] M. Galleguillos,et al. Presencia, abundancia y asociatividad de Citronella mucronata en bosques secundarios de Nothofagus obliqua en la precordillera de Curicó, región del Maule, Chile , 2014 .
[18] B. Koch,et al. TREESVIS-A SOFTWARE SYSTEM FOR SIMULTANEOUS 3 D-REAL-TIME VISUALISATION OF DTM , DSM , LASER RAW DATA , MULTISPECTRAL DATA , SIMPLE TREE AND BUILDING MODELS , 2004 .
[19] D. Lu. The potential and challenge of remote sensing‐based biomass estimation , 2006 .
[20] D. Roberts,et al. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .
[21] Florian Hartig,et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass , 2014 .
[22] H. Balzter,et al. Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .
[23] M. Batistella,et al. Satellite estimation of aboveground biomass and impacts of forest stand structure , 2005 .
[24] W. Cohen,et al. Lidar remote sensing of above‐ground biomass in three biomes , 2002 .
[25] W. Salas,et al. Secondary Forest Age and Tropical Forest Biomass Estimation Using Thematic Mapper Imagery , 2000 .
[26] Feng Zhao,et al. Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR , 2014, Remote. Sens..
[27] Ali Shamsoddini,et al. Pine plantation structure mapping using WorldView-2 multispectral image , 2013 .
[28] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[29] S. Goetz,et al. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .
[30] Alexandre Carleer,et al. Exploitation of Very High Resolution Satellite Data for Tree Species Identification , 2004 .
[31] Agostino Di Ciaccio,et al. Computational Statistics and Data Analysis Measuring the Prediction Error. a Comparison of Cross-validation, Bootstrap and Covariance Penalty Methods , 2022 .
[32] Biao Cao,et al. Experiment on extracting forest canopy height from Worldview-2 , 2011, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).
[33] S. Reutebuch,et al. Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy , 2005 .
[34] Thomas G. Dietterich. What is machine learning? , 2020, Archives of Disease in Childhood.
[35] B. Koch,et al. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .
[36] Kenneth E. Skog,et al. An outlook for sustainable forest bioenergy production in the Lake States , 2009 .
[37] Lori M. Bruce,et al. Why principal component analysis is not an appropriate feature extraction method for hyperspectral data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).
[38] R. Tibshirani,et al. Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .