High–Reynolds Number Wall Turbulence

We review wall-bounded turbulent flows, particularly high–Reynolds number, zero–pressure gradient boundary layers, and fully developed pipe and channel flows. It is apparent that the approach to an asymptotically high–Reynolds number state is slow, but at a sufficiently high Reynolds number the log law remains a fundamental part of the mean flow description. With regard to the coherent motions, very-large-scale motions or superstructures exist at all Reynolds numbers, but they become increasingly important with Reynolds number in terms of their energy content and their interaction with the smaller scales near the wall. There is accumulating evidence that certain features are flow specific, such as the constants in the log law and the behavior of the very large scales and their interaction with the large scales (consisting of vortex packets). Moreover, the refined attached-eddy hypothesis continues to provide an important theoretical framework for the structure of wall-bounded turbulent flows.

[1]  Hiroshi Kawamura,et al.  Very Large-Scale Structures and Their Effects on the Wall Shear-Stress Fluctuations in a Turbulent Channel Flow up to Reτ=640 , 2004 .

[2]  Alexander Smits,et al.  Further observations on the mean velocity distribution in fully developed pipe flow , 2004, Journal of Fluid Mechanics.

[3]  Craig B. Arnold,et al.  Turbulence measurements using a nanoscale thermal anemometry probe , 2010, Journal of Fluid Mechanics.

[4]  Ronald J. Adrian,et al.  Spanwise structure and scale growth in turbulent boundary layers , 2003, Journal of Fluid Mechanics.

[5]  L. Castillo,et al.  The effects of the upstream conditions on a low Reynolds number turbulent boundary layer with zero pressure gradient , 2000 .

[6]  G. I. Barenblatt,et al.  Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis , 1993, Journal of Fluid Mechanics.

[7]  Javier Jiménez,et al.  Linear energy amplification in turbulent channels , 2006, Journal of Fluid Mechanics.

[8]  Khairul Q. Zaman,et al.  Taylor hypothesis and large-scale coherent structures , 1981, Journal of Fluid Mechanics.

[9]  B. McKeon Scaling in Wall Turbulence: Scale Separation and Interaction (Invited Paper) , 2008 .

[10]  N. Hutchins,et al.  Some predictions of the attached eddy model for a high Reynolds number boundary layer , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  R. Mathis,et al.  Predictive Model for Wall-Bounded Turbulent Flow , 2010, Science.

[12]  Charles Meneveau,et al.  A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows , 2005 .

[13]  M. R. Head,et al.  New aspects of turbulent boundary-layer structure , 1981, Journal of Fluid Mechanics.

[14]  M. Hites,et al.  Scaling of high-Reynolds number turbulent boundary layers in the National Diagnostic Facility , 1997 .

[15]  Javier Jiménez,et al.  Spectra of the very large anisotropic scales in turbulent channels , 2003 .

[16]  K. Sreenivasan,et al.  Flow at ultra-high Reynolds and Rayleigh numbers : a status report , 1998 .

[17]  E. Krause,et al.  Comparative measurements in the canonical boundary layer at Reδ2≤6×104 on the wall of the German–Dutch windtunnel , 1995 .

[18]  A. Smits,et al.  Azimuthal structure of turbulence in high Reynolds number pipe flow , 2008, Journal of Fluid Mechanics.

[19]  Parviz Moin,et al.  Revisiting Taylor's hypothesis , 2009, Journal of Fluid Mechanics.

[20]  F. A. Schraub,et al.  The structure of turbulent boundary layers , 1967, Journal of Fluid Mechanics.

[21]  Ivan Marusic,et al.  Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers , 2005, Journal of Fluid Mechanics.

[22]  J. Brasseur,et al.  Analysis of Monin–Obukhov similarity from large-eddy simulation , 1997, Journal of Fluid Mechanics.

[23]  K. Sreenivasan,et al.  CICLoPE—a response to the need for high Reynolds number experiments , 2009 .

[24]  F. Clauser The Turbulent Boundary Layer , 1956 .

[25]  B. J. McKeon,et al.  A critical-layer framework for turbulent pipe flow , 2010, Journal of Fluid Mechanics.

[26]  Scott C. Morris,et al.  Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer , 2007, Journal of Fluid Mechanics.

[27]  K. Chauhan,et al.  On the Development of Wall-Bounded Turbulent Flows , 2008 .

[28]  Ivan Marusic,et al.  On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients , 1999, Journal of Fluid Mechanics.

[29]  J. Jiménez,et al.  Vorticity organization in the outer layer of turbulent channels with disturbed walls , 2007, Journal of Fluid Mechanics.

[30]  M. Oberlack A unified approach for symmetries in plane parallel turbulent shear flows , 2001, Journal of Fluid Mechanics.

[31]  P. Fife,et al.  On the logarithmic mean profile , 2009, Journal of Fluid Mechanics.

[32]  Arne V. Johansson,et al.  A note on the overlap region in turbulent boundary layers , 2000 .

[33]  R. Adrian,et al.  The Eddies and Scales of Wall Turbulence , 2012 .

[34]  Javier Jiménez,et al.  Scaling of the energy spectra of turbulent channels , 2003, Journal of Fluid Mechanics.

[35]  Hassan M. Nagib,et al.  Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers , 2007 .

[36]  Ivan Marusic,et al.  Evidence of the -1-law in a high Reynolds number turbulent boundary layer , 2007 .

[37]  Dan S. Henningson,et al.  Simulations of Spatially Evolving Turbulent Boundary Layers up to Reθ = 4300 , 2010 .

[38]  W. George,et al.  Two-point correlations in high Reynolds number flat plate turbulent boundary layers , 2009 .

[39]  G. Eyink Turbulent flow in pipes and channels as cross-stream ``inverse cascades'' of vorticity , 2008, 0809.1165.

[40]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[41]  Joseph Klewicki,et al.  Reynolds Number Dependence, Scaling, and Dynamics of Turbulent Boundary Layers , 2010 .

[42]  D. Coles The law of the wake in the turbulent boundary layer , 1956, Journal of Fluid Mechanics.

[43]  Jonathan Morrison,et al.  Eddy structure in turbulent boundary layers , 2000 .

[44]  Mohamed Gad-el-Hak,et al.  Reynolds Number Effects in Wall-Bounded Turbulent Flows , 1994 .

[45]  Ivan Marusic,et al.  A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis , 1995, Journal of Fluid Mechanics.

[46]  G. Taylor The Spectrum of Turbulence , 1938 .

[47]  A J Chorin,et al.  Structure of the zero-pressure-gradient turbulent boundary layer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Wallace,et al.  Near-surface turbulence in the atmospheric boundary layer , 2010 .

[49]  Daniel Chung,et al.  Large-eddy simulation and wall modelling of turbulent channel flow , 2009, Journal of Fluid Mechanics.

[50]  Garry L. Brown,et al.  Large structure in a turbulent boundary layer , 1977 .

[51]  Hassan M. Nagib,et al.  Variations of von Kármán coefficient in canonical flows , 2008 .

[52]  Neil D. Sandham,et al.  Wall Pressure and Shear Stress Spectra from Direct Simulations of Channel Flow , 2006 .

[53]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[54]  P. Moin,et al.  Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[55]  Luciano Castillo,et al.  Zero-Pressure-Gradient Turbulent Boundary Layer , 1997 .

[56]  Jason Monty,et al.  Developments In Smooth Wall Turbulent Duct Flows , 2005 .

[57]  James G. Brasseur,et al.  Three-Dimensional Buoyancy- and Shear-Induced Local Structure of the Atmospheric Boundary Layer , 1998 .

[58]  L. Perret,et al.  Vortical structures in the turbulent boundary layer: a possible route to a universal representation , 2008, Journal of Fluid Mechanics.

[59]  Martin Wosnik,et al.  A theory for turbulent pipe and channel flows , 2000, Journal of Fluid Mechanics.

[60]  M. S. Chong,et al.  On the mechanism of wall turbulence , 1982, Journal of Fluid Mechanics.

[61]  J. Eaton,et al.  Reynolds-number scaling of the flat-plate turbulent boundary layer , 2000, Journal of Fluid Mechanics.

[62]  D. Dennis,et al.  On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer , 2008, Journal of Fluid Mechanics.

[63]  Dan S. Henningson,et al.  Turbulent boundary layers up to Reθ=2500 studied through simulation and experiment , 2009 .

[64]  Jason Monty,et al.  Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation , 2009, Journal of Fluid Mechanics.

[65]  S. Balachandar,et al.  Mechanisms for generating coherent packets of hairpin vortices in channel flow , 1999, Journal of Fluid Mechanics.

[66]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[67]  Alexander Smits,et al.  Scaling of near-wall turbulence in pipe flow , 2009, Journal of Fluid Mechanics.

[68]  Javier Jiménez,et al.  Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003 , 2006 .

[69]  T. J. Hanratty,et al.  Large-scale modes of turbulent channel flow: transport and structure , 2001, Journal of Fluid Mechanics.

[70]  A. Smits,et al.  Scaling of global properties of turbulence and skin friction in pipe and channel flows , 2010, Journal of Fluid Mechanics.

[71]  R. Mathis,et al.  Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows , 2009 .

[72]  B. McKeon,et al.  The near-neutral atmospheric surface layer: turbulence and non-stationarity , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  Javier Jiménez,et al.  What are we learning from simulating wall turbulence? , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Carl D. Meinhart,et al.  Vortex organization in the outer region of the turbulent boundary layer , 2000, Journal of Fluid Mechanics.

[75]  Ivan Marusic,et al.  On the role of large-scale structures in wall turbulence , 2001 .

[76]  J. D. Li,et al.  Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers , 1990, Journal of Fluid Mechanics.

[77]  A. Townsend The Structure of Turbulent Shear Flow , 1975 .

[78]  A. Smits,et al.  Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow , 2007, Journal of Fluid Mechanics.

[79]  M. Gad-el-Hak,et al.  Near-wall behavior of turbulent wall-bounded flows , 2008 .

[80]  Charles Meneveau,et al.  Scale dependence of subgrid-scale model coefficients: An a priori study , 2008 .

[81]  P. Monkewitz,et al.  Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers , 2008 .

[82]  Fazle Hussain,et al.  Coherent structure generation in near-wall turbulence , 2002, Journal of Fluid Mechanics.

[83]  P. Monkewitz,et al.  Approach to an asymptotic state for zero pressure gradient turbulent boundary layers , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  J Uan C. Del,et al.  Linear energy amplification in turbulent channels , 2006 .

[85]  Ronald J. Adrian,et al.  Large-scale and very-large-scale motions in turbulent pipe flow , 2006, Journal of Fluid Mechanics.

[86]  I. Marusic,et al.  Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow , 2006, Journal of Fluid Mechanics.

[87]  Ronald J. Adrian,et al.  Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer , 2005, Journal of Fluid Mechanics.

[88]  J. Morrison,et al.  The interaction between inner and outer regions of turbulent wall-bounded flow , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[89]  Meredith Metzger,et al.  A comparative study of near-wall turbulence in high and low Reynolds number boundary layers , 2001 .

[90]  R. Panton Composite asymptotic expansions and scaling wall turbulence , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[91]  Ivan Marusic,et al.  Evidence of very long meandering features in the logarithmic region of turbulent boundary layers , 2007, Journal of Fluid Mechanics.

[92]  Ramis Örlü,et al.  Assessment of direct numerical simulation data of turbulent boundary layers , 2010, Journal of Fluid Mechanics.

[93]  Ronald L. Panton,et al.  Overview of the self-sustaining mechanisms of wall turbulence , 2001 .

[94]  Javier Jiménez,et al.  The autonomous cycle of near-wall turbulence , 1999, Journal of Fluid Mechanics.

[95]  R. Mathis,et al.  Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers , 2009, Journal of Fluid Mechanics.

[96]  Brian J. Cantwell,et al.  Organized Motion in Turbulent Flow , 1981 .

[97]  Jason Monty,et al.  Large-scale features in turbulent pipe and channel flows , 2007, Journal of Fluid Mechanics.

[98]  Ellen K. Longmire,et al.  Characteristics of vortex packets in turbulent boundary layers , 2003, Journal of Fluid Mechanics.

[99]  P. Monkewitz,et al.  Evidence on Non-Universality of Kármán Constant , 2007 .

[100]  B. Lindgren,et al.  Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers , 2004, Journal of Fluid Mechanics.

[101]  Jason Monty,et al.  A comparison of turbulent pipe, channel and boundary layer flows , 2009, Journal of Fluid Mechanics.

[102]  F. Durst,et al.  INVITED PAPER: Refined cf relation for turbulent channels and consequences for high-Re experiments , 2009 .

[103]  Michel Stanislas,et al.  Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry , 2005, Journal of Fluid Mechanics.

[104]  Ivan Marusic,et al.  Hot-wire spatial resolution issues in wall-bounded turbulence , 2009, Journal of Fluid Mechanics.

[105]  Javier Jiménez,et al.  Turbulent fluctuations above the buffer layer of wall-bounded flows , 2008, Journal of Fluid Mechanics.

[106]  P. Guest,et al.  Evaluations of the von Kármán constant in the atmospheric surface layer , 2006, Journal of Fluid Mechanics.

[107]  Meredith Metzger,et al.  Viscous sublayer flow visualizations at Rθ≂1 500 000 , 1995 .

[108]  Javier Jiménez,et al.  Estimation of turbulent convection velocities and corrections to Taylor's approximation , 2009, Journal of Fluid Mechanics.

[109]  Ivan Marusic,et al.  Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers , 1997 .

[110]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[111]  Persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows , 1997, physics/9708016.

[112]  Jens M. Österlund,et al.  Experimental studies of zero pressure-gradient turbulent boundary layer flow , 1999 .

[113]  A. Smits,et al.  Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues , 2010 .

[114]  Effect of wall-boundary disturbances on turbulent channel flows , 2006, Journal of Fluid Mechanics.

[115]  M. V. Zagarola,et al.  A new friction factor relationship for fully developed pipe flow , 2005, Journal of Fluid Mechanics.

[116]  Ivan Marusic,et al.  Streamwise turbulence intensity formulation for flat-plate boundary layers , 2003 .

[117]  J. Wills,et al.  On convection velocities in turbulent shear flows , 1964, Journal of Fluid Mechanics.

[118]  F. Durst,et al.  Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows , 2003 .

[119]  N. Hutchins,et al.  Study of the Log-Layer Structure in Wall Turbulence Over a Very Large Range of Reynolds Number , 2008 .

[120]  On the asymptotic similarity of the zero-pressure-gradient turbulent boundary layer , 2008, Journal of Fluid Mechanics.

[121]  H. H. Fernholz,et al.  The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data , 1996 .

[122]  A. Smits,et al.  Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow , 2010, Journal of Fluid Mechanics.

[123]  Paul C. Fife,et al.  Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows , 2005, Journal of Fluid Mechanics.

[124]  Alexander Smits,et al.  Scaling of the streamwise velocity component in turbulent pipe flow , 2004, Journal of Fluid Mechanics.

[125]  B. McKeon,et al.  Asymptotic scaling in turbulent pipe flow , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[126]  R. Adrian,et al.  Very large-scale motion in the outer layer , 1999 .

[127]  Ronald L. Panton,et al.  Self-Sustaining Mechanisms of Wall Turbulence , 1997 .

[128]  Ivan Marusic,et al.  High Reynolds number effects in wall turbulence , 2010, Proceeding of Sixth International Symposium on Turbulence and Shear Flow Phenomena.

[129]  R J Adrian,et al.  Large- and very-large-scale motions in channel and boundary-layer flows , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[130]  I. Marusic,et al.  Reynolds number invariance of the structure inclination angle in wall turbulence. , 2007, Physical review letters.

[131]  A. Smits,et al.  Mean-flow scaling of turbulent pipe flow , 1998, Journal of Fluid Mechanics.

[132]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[133]  Ronald J. Adrian,et al.  Hairpin vortex organization in wall turbulencea) , 2007 .

[134]  Ivan Marusic,et al.  Large-scale influences in near-wall turbulence , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[135]  R. Adrian,et al.  Packet Structure of Surface Eddies in the Atmospheric Boundary Layer , 2003 .

[136]  Alexander J. Smits IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow : proceedings of the IUTAM Symposium held in Princeton, NJ, U.S.A., 11-13 September 2002 , 2004 .

[137]  M. S. Chong,et al.  A theoretical and experimental study of wall turbulence , 1986, Journal of Fluid Mechanics.