Defect-Tolerant CMOL Cell Assignment via Satisfiability

We present a novel CAD approach to cell assignment of CMOL, a hybrid CMOS/molecular circuit architecture. Our method transforms any logically synthesized circuit based on AND/OR/NOT gates to a NOR gate circuit and maps the NOR gates to CMOL. We encode the CMOL cell assignment problem as Boolean conditions. The Boolean constraints are satisfiable if and only if there exists a solution to map all the NOR gates to the CMOL cells. We further investigate various types of static defects for the CMOL architecture and propose a reconfiguration technique that can deal with these defects. We introduce a new CMOL static defect model and provide an automated solution for CMOL cell assignment. Experiments show that our approach can result in smaller area (CMOL cell usage) and better timing delay than prior approach.

[1]  K.K. Likharev,et al.  Reconfigurable Hybrid CMOS/Nanodevice Circuits for Image Processing , 2007, IEEE Transactions on Nanotechnology.

[2]  C. M. Sotomayor Torres,et al.  Nanoimprint lithography: challenges and prospects , 2001 .

[3]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[4]  Changjian Gao,et al.  Cortical Models Onto CMOL and CMOS— Architectures and Performance/Price , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Dmitri B. Strukov,et al.  A reconfigurable architecture for hybrid CMOS/Nanodevice circuits , 2006, FPGA '06.

[6]  Xiaoyu Song,et al.  Diagnosis of clustered faults for identical degree topologies , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[8]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[9]  William J. Dauksher,et al.  Imprint lithography for integrated circuit fabrication , 2003 .

[10]  Mei Liu,et al.  Three-dimensional CMOL: three-dimensional integration of CMOS/nanomaterial hybrid digital circuits , 2007 .

[11]  D. Strukov,et al.  Defect-tolerant architectures for nanoelectronic crossbar memories. , 2007, Journal of nanoscience and nanotechnology.

[12]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[13]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[14]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[15]  D. Strukov,et al.  Prospects for terabit-scale nanoelectronic memories , 2004 .

[16]  Xiaoyu Song,et al.  Segmented channel routability via satisfiability , 2004, TODE.

[17]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[18]  Xiaolong Ma,et al.  Architectures for nanoelectronic implementation of artificial neural networks: new results , 2005, Neurocomputing.

[19]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[20]  Guowu Yang,et al.  Routability checking for three-dimensional architectures , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[21]  Andrew A. Kennings,et al.  Board-level multiterminal net assignment for the partial cross-bar architecture , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[22]  Mircea R. Stan,et al.  CMOS/nano co-design for crossbar-based molecular electronic systems , 2003 .

[23]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[24]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[25]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .