Close-to-conformal deformations of volumes

Conformal deformations are infinitesimal scale-rotations, which can be parameterized by quaternions. The condition that such a quaternion field gives rise to a conformal deformation is nonlinear and in any case only admits Möbius transformations as solutions. We propose a particular decoupling of scaling and rotation which allows us to find near to conformal deformations as minimizers of a quadratic, convex Dirichlet energy. Applied to tetrahedral meshes we find deformations with low quasiconformal distortion as the principal eigenvector of a (quaternionic) Laplace matrix. The resulting algorithms can be implemented with highly optimized standard linear algebra libraries and yield deformations comparable in quality to far more expensive approaches.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[3]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[4]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[5]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[6]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[7]  Mirela Ben-Chen,et al.  Planar shape interpolation with bounded distortion , 2013, ACM Trans. Graph..

[8]  Ofir Weber,et al.  Controllable conformal maps for shape deformation and interpolation , 2010, ACM Trans. Graph..

[9]  Lok Ming Lui,et al.  Large Deformation Registration via n-dimensional Quasi-conformal Maps , 2014, ArXiv.

[10]  Pierre Poulin,et al.  As-conformal-as-possible discrete volumetric mapping , 2012, Comput. Graph..

[11]  G. Green An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism , 2008, 0807.0088.

[12]  William Thomson,et al.  An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. , 1850 .

[13]  M. Ben-Chen,et al.  Can Mean-Curvature Flow Be Made Non-Singular? , 2012, 1203.6819.

[14]  Craig Gotsman,et al.  A Complex View of Barycentric Mappings , 2011, Comput. Graph. Forum.

[15]  Arthur Cayley,et al.  The Collected Mathematical Papers: On certain results relating to Quaternions , 2009 .

[16]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[17]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[18]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[19]  Yalin Wang,et al.  Volumetric Harmonic Map , 2003, Commun. Inf. Syst..

[20]  Iosif Polterovich,et al.  The legacy of Vladimir Andreevich Steklov , 2014 .

[21]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[22]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[23]  W. Stekloff,et al.  Sur les problèmes fondamentaux de la physique mathématique , 1902 .

[24]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[25]  Gaspard Monge,et al.  Application de l'analyse à la géométrie , 1850 .

[26]  Keenan Crane,et al.  Spin transformations of discrete surfaces , 2011, ACM Trans. Graph..

[27]  Pierre Poulin,et al.  Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization , 2013, SGP '13.

[28]  M. Ben-Chen,et al.  Variational harmonic maps for space deformation , 2009, SIGGRAPH 2009.

[29]  Hidehiko Yamabe On a deformation of Riemannian structures on compact manifolds , 1960 .

[30]  Daniel Cohen-Or,et al.  Green Coordinates , 2008, ACM Trans. Graph..

[31]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[32]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[33]  Peter Schröder,et al.  Smoke rings from smoke , 2014, ACM Trans. Graph..

[34]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[35]  Craig Gotsman,et al.  Variational harmonic maps for space deformation , 2009, ACM Trans. Graph..