Robust adaptive meshes for implicit surfaces

This work introduces a robust algorithm for computing good polygonal approximations of implicit surfaces, where robustness entails recovering the exact topology of the implicit surface. Furthermore, the approximate triangle mesh adapts to the geometry and to the topology of the real implicit surface. This method generates an octree subdivided according to the interval evaluation of the implicit function in order to guarantee the robustness, and to the interval automatic differentiation in order to adapt the octree to the geometry of the implicit surface. The triangle mesh is then generated from that octree through an enhanced dual marching

[1]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[2]  Rosane Minghim,et al.  The Jal triangulation: An adaptive triangulation in any dimension , 2006, Comput. Graph..

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Bing-Yu Chen,et al.  Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data , 2005, Comput. Graph. Forum.

[5]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[6]  Michael F. W. Schmidt Cutting cubesvisualizing implicit surfaces by adaptive polygonization , 2005, The Visual Computer.

[7]  Hélio Lopes,et al.  Robust adaptive polygonal approximation of implicit curves , 2002, Comput. Graph..

[8]  L. B. Rall The Arithmetic of Differentiation , 1986 .

[9]  A. James Stewart,et al.  Curvature-Dependent Triangulation of Implicit Surfaces , 2001, IEEE Computer Graphics and Applications.

[10]  Kevin G. Suffern,et al.  Visualisation of implicit surfaces , 2001, Comput. Graph..

[11]  Erich Hartmann,et al.  A marching method for the triangulation of surfaces , 1998, The Visual Computer.

[12]  R. E. Wengert,et al.  A simple automatic derivative evaluation program , 1964, Commun. ACM.

[13]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[14]  H Kagiwada,et al.  Numerical Derivatives and Nonlinear Analysis , 1986 .

[15]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[16]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[17]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[18]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[19]  Joaquim A. Jorge,et al.  Adaptive polygonization of implicit surfaces , 2005, Comput. Graph..

[20]  Mark Hall,et al.  Adaptive polygonalization of implicitly defined surfaces , 1990, IEEE Computer Graphics and Applications.

[21]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[22]  Luiz Velho,et al.  A unified approach for hierarchical adaptive tesselation of surfaces , 1999, TOGS.

[23]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[24]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.