The modified bordering method to evaluate eigenvalues and eigenvectors of normal matrices

A bordering procedure is here proposed to evaluate the eigensystem of hermitian matrices, and more in general of normal matrices, when the spectral decomposition is known of then−1×n−1 principal minor. The procedure is also applicable to special real and nonsymmetric matrices here named quasi-symmetric. The computational cost to write the characteristic polynomial isO(n2), using a new set of recursive formulas. A modified Brent algorithm is used to find the roots of the polynomial. The eigenvectors are evaluated in a direct way with a computational cost ofO(n2) for each one. Some numerical considerations indicate where numerical difficulties may occur. Numerical results are given comparing this method with the Givens-Householder one.

[1]  C. Brezinski Bordering methods and progressive forms for sequence transformations , 1988 .

[2]  David W. Lewis,et al.  Matrix theory , 1991 .

[3]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[4]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[5]  Sven Hammarling,et al.  Latent Roots and Latent Vectors , 1970 .

[6]  D. Faddeev,et al.  Computational Methods of Linear Algebra , 1959 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  George E. Forsythe ALTERNATIVE DERIVATIONS OF FOX'S ESCALATOR FORMULAE FOR LATENT ROOTS , 1952 .

[9]  Gene H. Golub,et al.  QR-Like Algorithms for Symmetric Arrow Matrices , 1992, SIAM J. Matrix Anal. Appl..

[10]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[11]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[12]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[13]  J. Morris,et al.  XVI. An escalator process for the solution of linear simultaneous equations , 1946 .

[14]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[15]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[16]  F. Trench,et al.  Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices , 1989 .

[17]  J. B. Rosser,et al.  Separation of close eigenvalues af a real symmetric matrix , 1951 .

[18]  D. Sorensen,et al.  On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .

[19]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[20]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[21]  G. Stewart,et al.  Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .

[22]  T. Chan,et al.  Iterative Methods for Solving Bordered Systems with Applications to Continuation Methods , 1985 .

[23]  Robert Todd Gregory,et al.  A collection of matrices for testing computational algorithms , 1969 .