The modified bordering method to evaluate eigenvalues and eigenvectors of normal matrices
暂无分享,去创建一个
[1] C. Brezinski. Bordering methods and progressive forms for sequence transformations , 1988 .
[2] David W. Lewis,et al. Matrix theory , 1991 .
[3] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[4] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[5] Sven Hammarling,et al. Latent Roots and Latent Vectors , 1970 .
[6] D. Faddeev,et al. Computational Methods of Linear Algebra , 1959 .
[7] Gene H. Golub,et al. Matrix computations , 1983 .
[8] George E. Forsythe. ALTERNATIVE DERIVATIONS OF FOX'S ESCALATOR FORMULAE FOR LATENT ROOTS , 1952 .
[9] Gene H. Golub,et al. QR-Like Algorithms for Symmetric Arrow Matrices , 1992, SIAM J. Matrix Anal. Appl..
[10] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[11] Brian T. Smith,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[12] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[13] J. Morris,et al. XVI. An escalator process for the solution of linear simultaneous equations , 1946 .
[14] B. S. Garbow,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[15] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[16] F. Trench,et al. Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices , 1989 .
[17] J. B. Rosser,et al. Separation of close eigenvalues af a real symmetric matrix , 1951 .
[18] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[19] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[20] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[21] G. Stewart,et al. Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .
[22] T. Chan,et al. Iterative Methods for Solving Bordered Systems with Applications to Continuation Methods , 1985 .
[23] Robert Todd Gregory,et al. A collection of matrices for testing computational algorithms , 1969 .