IERS Conventions (2003)

Abstract : This document is intended to define the standard reference systems realized by the International Earth Rotation Service (IERS) and the models and procedures used for this purpose. It is a continuation of the series of documents begun with the Project MERIT Standards (Melbourne et al., 1983) and continued with the IERS Standards (McCarthy, 1989; McCarthy, 1992) and IERS Conventions (McCarthy, 1996). The current issue of the IERS Conventions is called the IERS Conventions (2003). When referenced in recommendations and articles published in past years, this document may have been referred to as the IERS Conventions (2000). All of the products of the IERS may be considered to be consistent with the description in this document. If contributors to the IERS do not fully comply with these guidelines, they will carefully identify the exceptions. In these cases, the contributor provides an assessment of the elects of the departures from the conventions so that its results can be referred to the IERS Reference Systems. Contributors may use models equivalent to those specified herein. Products obtained with different observing methods have varying sensitivity to the adopted standards and reference systems, but no attempt has been made in this document to assess this sensitivity. The reference systems and procedures of the IERS are based on the resolutions of international scientific unions. The celestial system is based on IAU (International Astronomical Union) Resolution A4 (1991). It was officially initiated and named by IAU Resolution B2 (1997) and its definition was further refined by IAU Resolution B1 (2000). The terrestrial system is based on IUGG Resolution 2 (1991). The transformation between celestial and terrestrial systems is based on IAU Resolution B1 (2000).

[1]  E. Standish The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac , 1990 .

[2]  J. Vondrák,et al.  Considerations concerning the non-rigid Earth nutation theory , 1998 .

[3]  E. W. Schwiderski,et al.  Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal lunar tide M2 , 1983 .

[4]  Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism , 1983 .

[5]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[6]  Sergei A. Klioner General Relativistic Model of VLBI Observables , 1991 .

[7]  Dennis D. McCarthy,et al.  An Abridged Model of the Precession–Nutation of the Celestial Pole , 2003 .

[8]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[9]  Comparison of the short period rigid earth nutation series. , 2000 .

[10]  David J. Tholen,et al.  The Orbit of Charon , 1997 .

[11]  Thomas A. Herring,et al.  Modeling of nutation‐precession: Very long baseline interferometry results , 2002 .

[12]  D. E. Cartwright,et al.  Corrected Tables of Tidal Harmonics , 1973 .

[13]  HARMONIC DECOMPOSITION OF TIME EPHEMERIS TE405 , 2003 .

[14]  R. Davis,et al.  Equation for the Determination of the Density of Moist Air (1981/91) , 1992 .

[15]  Basic Problems in the Kinematics of the Rotation of the Earth , 1979 .

[16]  E. W. Schwiderski,et al.  The NSWC Global Ocean Tide Data Tape (GOTD), Its Features and Application, Random-Point Tide Program. , 1981 .

[17]  P. Defraigne,et al.  Length of day variations due to zonal tides for an inelastic earth in non-hydrostatic equilibrium , 1999 .

[18]  Claude Boucher,et al.  New trends for the realization of the international terrestrial reference system , 2002 .

[19]  X. X. Newhall,et al.  Luni-solar precession - Determination from lunar laser ranges , 1991 .

[20]  P. M. Mathews,et al.  Love numbers for diurnal tides: Relation to wobble admittances and resonance expansions , 1995 .

[21]  Christian Boucher Terrestrial Coordinate Systems and Frames , 2000 .

[22]  Hiroshi Kinoshita,et al.  Note on the relation between the equinox and Guinot's non-rotating origin , 1983 .

[23]  Torsten Hartmann,et al.  The HW95 tidal potential catalogue , 1995 .

[24]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[25]  D. S. MacMillan,et al.  Atmospheric gradients from very long baseline interferometry observations , 1995 .

[26]  Florent Lyard,et al.  FES98: A new global tide finite element solution independent of altimetry , 2000 .

[27]  R. D. Ray,et al.  Diurnal and Semidiurnal Variations in the Earth's Rotation Rate Induced by Oceanic Tides , 1994, Science.

[28]  J. D. H. Pilkington,et al.  Time and the Earth’s Rotation , 1979 .

[29]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[30]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[31]  F. Roosbeek RATGP95: a harmonic development of the tide-generating potential using an analytical method. , 1996 .

[32]  Gérard Petit,et al.  Importance of a Common Framework for the Realization of Space-Time Reference Systems , 2000 .

[33]  J. Saastamoinen,et al.  Contributions to the theory of atmospheric refraction , 1972 .

[34]  F. Roosbeek Diurnal and Subdiurnal Terms in Rdan97 Series , 1999 .

[35]  W. L. Sjogren,et al.  Venus: A total mass estimate , 1990 .

[36]  D. Chelton,et al.  Ocean signals in tide gauge records , 1986 .

[37]  J. Chapront,et al.  The lunar ephemeris ELP 2000. , 1983 .

[38]  P. Woodworth,et al.  Departures from the local inverse barometer model observed in altimeter and tide gauge data and in a global barotropic numerical model , 2001 .

[39]  Z. Altamimi,et al.  Results and analysis of the ITRF94. , 1996 .

[40]  T. Fukushima,et al.  A numerical time ephemeris of the Earth , 1999 .

[41]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[42]  John M. Wahr,et al.  The forced nutations of an elliptical, rotating, elastic and oceanless earth , 1981 .

[43]  A picosecond accuracy relativistic VLBI model via Fermi normal coordinates , 1991 .

[44]  Jochen Zschau,et al.  Static deformations and gravity changes at the earth's surface due to atmospheric loading , 1985 .

[45]  Patrick Charlot,et al.  The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry , 1998 .

[46]  John M. Wahr,et al.  Deformation induced by polar motion , 1985 .

[47]  Richard D. Rosen,et al.  Sea Level Response to Pressure Forcing in a Barotropic Numerical Model , 1991 .

[48]  N. Capitaine,et al.  The celestial pole coordinates , 1990 .

[49]  Richard B. Langley,et al.  An analysis of high-accuracy tropospheric delay mapping functions , 2000 .

[50]  B. Chao,et al.  Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum , 1996 .

[51]  P. K. Seidelmann,et al.  Why new time scales , 1992 .

[52]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[53]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[54]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[55]  H. Scherneck Loading Green's functions for a continental shield with Q-structure for the mantle and density constraints from the geoid , 1990 .

[56]  G. W. Davis,et al.  The Joint Gravity Model 3 , 1996 .

[57]  J. G. Williams,et al.  Tidal variations of earth rotation , 1981 .

[58]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[59]  J. Anderson,et al.  The mass, gravity field, and ephemeris of Mercury , 1987 .

[60]  Robert A. Jacobson,et al.  The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data , 1992 .

[61]  Thomas H. Jordan,et al.  Present‐day plate motions , 1977 .

[62]  A. T. Doodson,et al.  The analysis of tidal observations , 1928 .

[63]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[64]  E. M. Standish,et al.  TIME SCALES IN THE JPL AND CFA EPHEMERIDES , 1998 .

[65]  S. M. Kopejkin Celestial coordinate reference systems in curved space-time , 1988 .