Understanding disease mechanisms with models of signaling pathway activities

BackgroundUnderstanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine.ResultsHere we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets.ConclusionsThe proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

[1]  Frank Emmert-Streib,et al.  The Chronic Fatigue Syndrome: A Comparative Pathway Analysis , 2007, J. Comput. Biol..

[2]  J. Dopazo,et al.  Multidimensional Gene Set Analysis of Genomic Data , 2010, PloS one.

[3]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[4]  Mark A Ragan,et al.  Understanding cellular function and disease with comparative pathway analysis , 2013, Genome Medicine.

[5]  Julio Saez-Rodriguez,et al.  Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data , 2009, PLoS Comput. Biol..

[6]  P. Khatri,et al.  A systems biology approach for pathway level analysis. , 2007, Genome research.

[7]  Seon-Young Kim,et al.  Gene-set approach for expression pattern analysis , 2008, Briefings Bioinform..

[8]  May D. Wang,et al.  GoMiner: a resource for biological interpretation of genomic and proteomic data , 2003, Genome Biology.

[9]  J. Dopazo,et al.  Gene set internal coherence in the context of functional profiling , 2009, BMC Genomics.

[10]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[11]  Chad A Shaw,et al.  Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation , 2007, PLoS biology.

[12]  P. Laird Principles and challenges of genome-wide DNA methylation analysis , 2010, Nature Reviews Genetics.

[13]  J. Scoazec,et al.  Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. , 2012, The Journal of clinical endocrinology and metabolism.

[14]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[15]  Hans Joenje,et al.  The emerging genetic and molecular basis of Fanconi anaemia , 2001, Nature Reviews Genetics.

[16]  Joaquín Dopazo,et al.  Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling , 2010, Nucleic Acids Res..

[17]  Maqc Consortium The MicroArray Quality Control ( MAQC )-II study of common practices for the development and validation of microarray-based predictive models , 2012 .

[18]  G. Milano,et al.  JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. , 2006, European journal of cancer.

[19]  Jia Wang,et al.  VEGF expression is augmented by hypoxia‑induced PGIS in human fibroblasts. , 2013, International journal of oncology.

[20]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[21]  Debashis Sahoo,et al.  Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age , 2011, Proceedings of the National Academy of Sciences.

[22]  D. Lauffenburger,et al.  Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction , 2009, Molecular systems biology.

[23]  T. Park,et al.  Pathway-Based Evaluation in Early Onset Colorectal Cancer Suggests Focal Adhesion and Immunosuppression along with Epithelial-Mesenchymal Transition , 2012, PloS one.

[24]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[25]  K. Ho,et al.  A Susceptibility Gene Set for Early Onset Colorectal Cancer That Integrates Diverse Signaling Pathways: Implication for Tumorigenesis , 2007, Clinical Cancer Research.

[26]  Pierluigi Navarra,et al.  n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. , 2004, Carcinogenesis.

[27]  Yingqun Wang,et al.  Wnt/Planar cell polarity signaling: A new paradigm for cancer therapy , 2009, Molecular Cancer Therapeutics.

[28]  Ying-Xuan Chen,et al.  Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. , 2008, Neoplasia.

[29]  Thomas Lengauer,et al.  Statistical Applications in Genetics and Molecular Biology Calculating the Statistical Significance of Changes in Pathway Activity From Gene Expression Data , 2011 .

[30]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..

[31]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[32]  E. Huang,et al.  Integrating Factor Analysis and a Transgenic Mouse Model to Reveal a Peripheral Blood Predictor of Breast Tumors , 2011, BMC Medical Genomics.

[33]  Geffrey F. Stopper,et al.  Choosing the right path: enhancement of biologically relevant sets of genes or proteins using pathway structure , 2009, Genome Biology.

[34]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[35]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[36]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[37]  Gabriele Sales,et al.  graphite - a Bioconductor package to convert pathway topology to gene network , 2012, BMC Bioinformatics.

[38]  Paolo G. V. Martini,et al.  Graphite Web: web tool for gene set analysis exploiting pathway topology , 2013, Nucleic Acids Res..

[39]  Steven C. Lawlor,et al.  MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data , 2003, Genome Biology.

[40]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[41]  J. Bennett,et al.  Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. , 2009, Toxicology and applied pharmacology.

[42]  Larissa Stanberry,et al.  Correction: Differential Expression Analysis for Pathways , 2013, PLoS Computational Biology.

[43]  Winston Haynes,et al.  Differential Expression Analysis for Pathways , 2013, PLoS Comput. Biol..

[44]  R. Tibshirani,et al.  Empirical bayes methods and false discovery rates for microarrays , 2002, Genetic epidemiology.

[45]  Alexander M. Seifalian,et al.  Role of cyclooxygenase-2 in the angiogenesis of colorectal cancer , 2003, International Journal of Colorectal Disease.

[46]  Shinji Kihara,et al.  Adiponectin Regulates Vascular Endothelial Growth Factor-C Expression in Macrophages via Syk-ERK Pathway , 2013, PloS one.

[47]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[48]  Joaquín Dopazo,et al.  From genes to functional classes in the study of biological systems , 2007, BMC Bioinformatics.

[49]  A. Barabasi,et al.  Systems biology and the future of medicine , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[50]  A. D’Andrea,et al.  Molecular pathogenesis of Fanconi anemia: recent progress. , 2006, Blood.

[51]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[52]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[53]  Da Young Oh,et al.  Wnt Fans the Flames in Obesity , 2010, Science.

[54]  Xia Li,et al.  A sub-pathway-based approach for identifying drug response principal network , 2011, Bioinform..

[55]  Francisco Salavert,et al.  Inferring the functional effect of gene expression changes in signaling pathways , 2013, Nucleic Acids Res..

[56]  Monica Chiogna,et al.  Along signal paths: an empirical gene set approach exploiting pathway topology , 2012, Nucleic acids research.

[57]  C. Ball,et al.  Repeatability of published microarray gene expression analyses , 2009, Nature Genetics.

[58]  Kenneth H. Buetow,et al.  Superposition of Transcriptional Behaviors Determines Gene State , 2008, PloS one.

[59]  J. Dopazo Genomics and transcriptomics in drug discovery. , 2014, Drug discovery today.

[60]  Soheil Meshinchi,et al.  Identification of genes with abnormal expression changes in acute myeloid leukemia , 2008, Genes, chromosomes & cancer.

[61]  Sabah Jassim,et al.  A Topology-Based Score for Pathway Enrichment , 2012, J. Comput. Biol..

[62]  Steffen Klamt,et al.  The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data , 2009, PLoS Comput. Biol..

[63]  Peter Bühlmann,et al.  Analyzing gene expression data in terms of gene sets: methodological issues , 2007, Bioinform..

[64]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[65]  S. Huang,et al.  Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. , 2000, Experimental cell research.

[66]  Ara Darzi,et al.  Preparing for precision medicine. , 2012, The New England journal of medicine.

[67]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[68]  Doheon Lee,et al.  Inferring Pathway Activity toward Precise Disease Classification , 2008, PLoS Comput. Biol..

[69]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[70]  G. Semenza,et al.  Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. , 2003, Cancer research.

[71]  A. Conesa,et al.  Differential expression in RNA-seq: a matter of depth. , 2011, Genome research.

[72]  Zoltan Szallasi,et al.  Jetset: selecting the optimal microarray probe set to represent a gene , 2011, BMC Bioinformatics.

[73]  Pooja Mittal,et al.  A novel signaling pathway impact analysis , 2009, Bioinform..

[74]  Purvesh Khatri,et al.  Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments , 2004, Nucleic Acids Res..

[75]  M. W. Thompson,et al.  Specific cellular defects in patients with Fanconi anemia , 1979, Journal of cellular physiology.

[76]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[77]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[78]  Jane Yates,et al.  TLR8-dependent TNF-(alpha) overexpression in Fanconi anemia group C cells. , 2009, Blood.

[79]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[80]  Dongxiao Zhu,et al.  TEAK: Topology Enrichment Analysis frameworK for detecting activated biological subpathways , 2012, Nucleic acids research.

[81]  Roberto Romero,et al.  A Comparison of Gene Set Analysis Methods in Terms of Sensitivity, Prioritization and Specificity , 2013, PloS one.

[82]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[83]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[84]  E. Cundari,et al.  Deregulated apoptosis is a hallmark of the Fanconi anemia syndrome. , 1997, Cancer research.

[85]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[86]  J. Ioannidis,et al.  Replication validity of genetic association studies , 2001, Nature Genetics.

[87]  S. Brahmachari,et al.  Boolean network analysis of a neurotransmitter signaling pathway. , 2007, Journal of theoretical biology.

[88]  Rob Pieters,et al.  Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia , 2011, Haematologica.

[89]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[90]  David Montaner,et al.  Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice , 2011, Diabetes.

[91]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[92]  Joaquín Dopazo,et al.  Formulating and testing hypotheses in functional genomics , 2009, Artif. Intell. Medicine.

[93]  J. Berlin,et al.  Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. , 2004, The New England journal of medicine.

[94]  Kenneth H. Buetow,et al.  Identification of Key Processes Underlying Cancer Phenotypes Using Biologic Pathway Analysis , 2007, PloS one.

[95]  Yu Liu,et al.  Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases , 2012, BMC Systems Biology.

[96]  G. Mcmahon,et al.  VEGF receptor signaling in tumor angiogenesis. , 2000, The oncologist.

[97]  Ali Shojaie,et al.  Analysis of Gene Sets Based on the Underlying Regulatory Network , 2009, J. Comput. Biol..

[98]  Sandrine Dudoit,et al.  More power via graph-structured tests for differential expression of gene networks , 2012, 1206.6980.

[99]  R. Albert,et al.  Network model of survival signaling in large granular lymphocyte leukemia , 2008, Proceedings of the National Academy of Sciences.

[100]  T. Helikar,et al.  Emergent decision-making in biological signal transduction networks , 2008, Proceedings of the National Academy of Sciences.