Ancillary science with Ariel: feasibility and scientific potential of young stellar object observations
暂无分享,去创建一个
P. Ábrahám | A. Moór | J. Morales | Á. Kóspál | N. Nakhjiri | G. Marton | C. Kiss | R. Szabó | 'A. K'osp'al | G. Szabó | B. Gyürüs | N. Nakhjiri | G. Szab'o | R'obert Szab'o | P. 'Abrah'am | Attila Mo'or | Boldizs'ar I. GyHurHus
[1] K. Kinemuchi,et al. A New Sample of Warm Extreme Debris Disks from the ALLWISE Catalog , 2021, The Astrophysical Journal.
[2] R. Beck,et al. Identification of Young Stellar Object candidates in the Gaia DR2 x AllWISE catalogue with machine learning methods , 2019, Monthly Notices of the Royal Astronomical Society.
[3] Paul Eccleston,et al. The Phase A study of the ESA M4 mission candidate ARIEL , 2018 .
[4] Enzo Pascale,et al. UvA-DARE (Digital Academic Repository) A chemical survey of exoplanets with ARIEL , 2022 .
[5] T. Henning,et al. Chemical Signatures of the FU Ori Outbursts , 2018, The Astrophysical Journal.
[6] B. Reipurth,et al. A Near-infrared Spectroscopic Survey of FU Orionis Objects , 2018, The Astrophysical Journal.
[7] C. Bailer-Jones,et al. Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.
[8] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[9] M. Audard,et al. The chemistry of episodic accretion in embedded objects. 2D radiation thermo-chemical models of the post-burst phase , 2017, 1705.03946.
[10] G. Rieke,et al. PLANETARY COLLISIONS OUTSIDE THE SOLAR SYSTEM: TIME DOMAIN CHARACTERIZATION OF EXTREME DEBRIS DISKS , 2015, 1503.05610.
[11] U. Michigan,et al. Chemical tracers of episodic accretion in low-mass protostars , 2015, 1503.04951.
[12] K. Pontoppidan,et al. The chemistry of planet-forming regions is not interstellar. , 2014, Faraday discussions.
[13] Marc Audard,et al. Episodic Accretion in Young Stars , 2014, 1401.3368.
[14] Dominic J. Benford,et al. Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.
[15] Austria,et al. Formation of giant planets and brown dwarfs on wide orbits , 2013, 1302.1892.
[16] K. Wood,et al. A systematic survey for eruptive young stellar objects using mid-infrared photometry , 2013, 1301.3152.
[17] Dmitry Semenov,et al. Chemistry in protoplanetary disks. , 2013, Chemical reviews.
[18] N. Evans,et al. CO2 ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY , 2012, 1208.5797.
[19] FUNDAMENTAL ASPECTS OF EPISODIC ACCRETION CHEMISTRY EXPLORED WITH SINGLE-POINT MODELS , 2012, 1206.5749.
[20] G. Rieke,et al. VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS , 2012, 1205.1040.
[21] T. Henning,et al. MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS , 2012, 1204.3473.
[22] T. Henning,et al. EX Lupi FROM QUIESCENCE TO OUTBURST: EXPLORING THE LTE APPROACH IN MODELING BLENDED H2O AND OH MID-INFRARED EMISSION , 2011, 1111.2697.
[23] Jonathan P. Williams,et al. Protoplanetary Disks and Their Evolution , 2011, 1103.0556.
[24] N. Evans,et al. THE SPITZER C2D SURVEY OF NEARBY DENSE CORES. XI. INFRARED AND SUBMILLIMETER OBSERVATIONS OF CB130 , 2011, 1101.1067.
[25] Th. Henning,et al. An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Episodic Formation of Cometary Material in the Outburst of a Young Sun-like Star Protoplanetary Disk Structures in Ophiuchus , 2022 .
[26] N. Evans,et al. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. V. DISCOVERY OF A VeLLO IN THE “STARLESS” DENSE CORE L328 , 2008, 0812.2012.
[27] M. Wyatt,et al. Evolution of Debris Disks , 2008 .
[28] Jeong-Eun Lee. CHEMICAL EVOLUTION IN VeLLOs , 2007, 0712.1866.
[29] E. Ostriker,et al. Theory of Star Formation , 2007, 0707.3514.
[30] A. E. Wright,et al. THEORY OF STAR FORMATION. , 1970 .