Ancillary science with Ariel: feasibility and scientific potential of young stellar object observations

[1]  K. Kinemuchi,et al.  A New Sample of Warm Extreme Debris Disks from the ALLWISE Catalog , 2021, The Astrophysical Journal.

[2]  R. Beck,et al.  Identification of Young Stellar Object candidates in the Gaia DR2 x AllWISE catalogue with machine learning methods , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  Paul Eccleston,et al.  The Phase A study of the ESA M4 mission candidate ARIEL , 2018 .

[4]  Enzo Pascale,et al.  UvA-DARE (Digital Academic Repository) A chemical survey of exoplanets with ARIEL , 2022 .

[5]  T. Henning,et al.  Chemical Signatures of the FU Ori Outbursts , 2018, The Astrophysical Journal.

[6]  B. Reipurth,et al.  A Near-infrared Spectroscopic Survey of FU Orionis Objects , 2018, The Astrophysical Journal.

[7]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[8]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[9]  M. Audard,et al.  The chemistry of episodic accretion in embedded objects. 2D radiation thermo-chemical models of the post-burst phase , 2017, 1705.03946.

[10]  G. Rieke,et al.  PLANETARY COLLISIONS OUTSIDE THE SOLAR SYSTEM: TIME DOMAIN CHARACTERIZATION OF EXTREME DEBRIS DISKS , 2015, 1503.05610.

[11]  U. Michigan,et al.  Chemical tracers of episodic accretion in low-mass protostars , 2015, 1503.04951.

[12]  K. Pontoppidan,et al.  The chemistry of planet-forming regions is not interstellar. , 2014, Faraday discussions.

[13]  Marc Audard,et al.  Episodic Accretion in Young Stars , 2014, 1401.3368.

[14]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[15]  Austria,et al.  Formation of giant planets and brown dwarfs on wide orbits , 2013, 1302.1892.

[16]  K. Wood,et al.  A systematic survey for eruptive young stellar objects using mid-infrared photometry , 2013, 1301.3152.

[17]  Dmitry Semenov,et al.  Chemistry in protoplanetary disks. , 2013, Chemical reviews.

[18]  N. Evans,et al.  CO2 ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY , 2012, 1208.5797.

[19]  FUNDAMENTAL ASPECTS OF EPISODIC ACCRETION CHEMISTRY EXPLORED WITH SINGLE-POINT MODELS , 2012, 1206.5749.

[20]  G. Rieke,et al.  VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS , 2012, 1205.1040.

[21]  T. Henning,et al.  MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS , 2012, 1204.3473.

[22]  T. Henning,et al.  EX Lupi FROM QUIESCENCE TO OUTBURST: EXPLORING THE LTE APPROACH IN MODELING BLENDED H2O AND OH MID-INFRARED EMISSION , 2011, 1111.2697.

[23]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[24]  N. Evans,et al.  THE SPITZER C2D SURVEY OF NEARBY DENSE CORES. XI. INFRARED AND SUBMILLIMETER OBSERVATIONS OF CB130 , 2011, 1101.1067.

[25]  Th. Henning,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Episodic Formation of Cometary Material in the Outburst of a Young Sun-like Star Protoplanetary Disk Structures in Ophiuchus , 2022 .

[26]  N. Evans,et al.  THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. V. DISCOVERY OF A VeLLO IN THE “STARLESS” DENSE CORE L328 , 2008, 0812.2012.

[27]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[28]  Jeong-Eun Lee CHEMICAL EVOLUTION IN VeLLOs , 2007, 0712.1866.

[29]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[30]  A. E. Wright,et al.  THEORY OF STAR FORMATION. , 1970 .