iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm

Graphical abstract Complex biological network based on known molecular association structure.

[1]  Zuguo Yu,et al.  Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network , 2019, Scientific Reports.

[2]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[3]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[4]  Hong-Bin Shen,et al.  Learning distributed representations of RNA sequences and its application for predicting RNA-protein binding sites with a convolutional neural network , 2018, Neurocomputing.

[5]  Yang Li,et al.  HMDD v2.0: a database for experimentally supported human microRNA and disease associations , 2013, Nucleic Acids Res..

[6]  Yuan Zhou,et al.  HMDD v3.0: a database for experimentally supported human microRNA–disease associations , 2018, Nucleic Acids Res..

[7]  Hai-Cheng Yi,et al.  Construction and Comprehensive Analysis of a Molecular Association Network via lncRNA–miRNA–Disease–Drug–Protein Graph , 2019, Cells.

[8]  WangJianxin,et al.  Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities , 2018 .

[9]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[10]  Qiong Zhang,et al.  lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs , 2017, Nucleic Acids Res..

[11]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[12]  Jing Li,et al.  dbDEPC 2.0: updated database of differentially expressed proteins in human cancers , 2011, Nucleic Acids Res..

[13]  Xing Chen,et al.  EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction , 2018, Cell Death & Disease.

[14]  B N Nathwani,et al.  Malignant lymphoma, lymphoblastic , 1976, Cancer.

[15]  Qinghua Guo,et al.  LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse , 2018, Nucleic Acids Res..

[16]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[17]  Dong Wang,et al.  Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases , 2010, Bioinform..

[18]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[19]  Xing Chen,et al.  LncRNADisease: a database for long-non-coding RNA-associated diseases , 2012, Nucleic Acids Res..

[20]  C E Lipscomb,et al.  Medical Subject Headings (MeSH). , 2000, Bulletin of the Medical Library Association.

[21]  S. Griffiths-Jones,et al.  miRBase: microRNA Sequences and Annotation , 2010, Current protocols in bioinformatics.

[22]  B. Hulka,et al.  Breast cancer: cause and prevention , 1995, The Lancet.

[23]  Xing Chen,et al.  HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction , 2016, Oncotarget.

[24]  Zhu-Hong You,et al.  Novel Human miRNA-Disease Association Inference Based on Random Forest , 2018, Molecular therapy. Nucleic acids.

[25]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[26]  Jan Gorodkin,et al.  Protein-driven inference of miRNA–disease associations , 2013, Bioinform..

[27]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[28]  Leonard D. Goldstein,et al.  MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype , 2007, Genome Biology.

[29]  Xia Li,et al.  Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes , 2013, BMC Systems Biology.

[30]  Xing Chen,et al.  LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities , 2019, PLoS Comput. Biol..

[31]  Lei Wang,et al.  BNPMDA: Bipartite Network Projection for MiRNA–Disease Association prediction , 2018, Bioinform..

[32]  Ana Lleo,et al.  Primary biliary cirrhosis is associated with altered hepatic microRNA expression. , 2009, Journal of autoimmunity.

[33]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[34]  Tao Wang,et al.  PMRD: plant microRNA database , 2009, Nucleic Acids Res..

[35]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2019 , 2018, Nucleic Acids Res..

[36]  Fangyuan Zou,et al.  Altered let-7 expression in Myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells. , 2012, International immunopharmacology.

[37]  Bolin Chen,et al.  A learning-based framework for miRNA-disease association identification using neural networks , 2018, bioRxiv.

[38]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[39]  Wei Tang,et al.  dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers , 2016, Nucleic Acids Res..

[40]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[41]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[42]  Hong-Bin Shen,et al.  MiRGOFS: a GO‐based functional similarity measurement for miRNAs, with applications to the prediction of miRNA subcellular localization and miRNA‐disease association , 2018, Bioinform..

[43]  Xabier Agirre,et al.  Epigenetic regulation of microRNA expression in colorectal cancer , 2009, International journal of cancer.