On fuzzification of the notion of quantaloid

The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of V-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.

[1]  Isar Stubbe,et al.  Categorical structures enriched in a quantaloid: tensored and cotensored categories , 2004, math/0411366.

[2]  Doug Gurr,et al.  A representation theorem for quantales , 1993 .

[3]  John W. Gray Review: G. M. Kelly, Basic concepts of enriched category theory , 1983 .

[4]  Sergey A. Solovyov,et al.  Sobriety and spatiality in varieties of algebras , 2008, Fuzzy Sets Syst..

[5]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[6]  Stefano Kasangian,et al.  Decomposition of automata and enriched category theory , 1986 .

[7]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Horst Herrlich,et al.  Category theory , 1979 .

[10]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[11]  I. Stubbe CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID: CATEGORIES, DISTRIBUTORS AND FUNCTORS , 2004, math/0409473.

[12]  Ross Street,et al.  ENRICHED CATEGORIES AND COHOMOLOGY , 1983 .

[13]  Jan Paseka,et al.  Algebraic and Categorical Aspects of Quantales , 2008 .

[14]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[15]  C. L. Chang,et al.  Fuzzy topological spaces , 1968 .

[16]  Jan Paseka,et al.  A note on nuclei of quantale modules , 2002 .

[17]  K. I. Rosenthal The Theory of Quantaloids , 1996 .

[18]  Ross Street,et al.  Elementary cosmoi I , 1974 .

[19]  J. Goguen L-fuzzy sets , 1967 .

[20]  K. I. Rosenthal Quantales and their applications , 1990 .

[21]  R. Lowen Fuzzy topological spaces and fuzzy compactness , 1976 .

[22]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[23]  Andrew M. Pitts,et al.  Applications of Sup-Lattice Enriched Category Theory to Sheaf Theory , 1988 .

[24]  Joan Wick Pelletier,et al.  On the quantisation of spaces , 2002 .

[25]  Algebraic logic , 1985, Problem books in mathematics.

[26]  Sergey A. Solovyov,et al.  From quantale algebroids to topological spaces: Fixed- and variable-basis approaches , 2010, Fuzzy Sets Syst..

[27]  Kimmo I. Rosenthal,et al.  Quantaloidal nuclei, the syntactic congruence and tree automata , 1992 .

[28]  Completion of partially ordered sets , 2007 .

[29]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[30]  Sergey A. Solovyov,et al.  On the category Q-Mod , 2008 .

[31]  Isar Stubbe,et al.  Categorical Structures Enriched in a Quantaloid: Orders and Ideals over a Base Quantaloid , 2004, Appl. Categorical Struct..

[32]  Stefano Kasangian,et al.  Tree automata and enriched category theor , 1985 .

[33]  S. Solovyov ON MONADIC QUANTALE ALGEBRAS: BASIC PROPERTIES AND REPRESENTATION THEOREMS , 2010 .

[34]  B. Mitchell,et al.  Rings with several objects , 1972 .

[35]  Joseph A. Goguen,et al.  The fuzzy tychonoff theorem , 1973 .

[36]  R. P. Dilworth Non-Commutative Residuated Lattices , 1939 .

[37]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[38]  Morgan Ward,et al.  Residuation in structures over which a multiplication is defined , 1937 .

[39]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[40]  On coproducts of quantale algebras , 2007 .

[41]  Isar Stubbe Q-MODULES ARE Q-SUPLATTICES , 2008, 0809.4343.

[42]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[43]  Involutive and relational quantaloids , 1999 .

[44]  S. Lane Categories for the Working Mathematician , 1971 .

[45]  Categorical structures enriched in a quantaloid : Regular presheaves, regular semicategories , 2004, math/0409475.

[46]  Ross Street,et al.  Cauchy characterization of enriched categories , 1981 .

[47]  Joan Wick Pelletier,et al.  On the quantisation of points , 2001 .

[48]  Kimmo I. Rosenthal Quantaloids, enriched categories and automata theory , 1995, Appl. Categorical Struct..

[49]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .