Connectivity Models for Optoelectronic Computing Systems

Rent's rule and related concepts of connectivity such as dimensionality, line-length distributions, and separators have found great use in fundamental studies of different interconnection media, including superconductors and optics, as well as the study of optoelectronic computing systems. In this paper generalizations for systems for which the Rent exponent is not constan tthroughout the interconnection hierarchy are provided. The origin of Rent's rule is stressed as resulting from the embedding of a high-dimensional information flow graph to two-or three-dimensional physical space. The applicability of these traditionally solid-wire-based concepts to free-space optically interconnected systems is discussed.

[1]  David A. B. Miller,et al.  Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture , 1997, J. Parallel Distributed Comput..

[2]  R. W. Keyes,et al.  The wire-limited logic chip , 1982 .

[3]  Haldun M. Ozaktas Fundamentals of optical interconnections-a review , 1997, Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections.

[4]  Harold Neville Vazeille Temperley,et al.  Graph theory and applications , 1981 .

[5]  Arnold L. Rosenberg,et al.  Three-Dimensional Circuit Layouts , 1984, SIAM J. Comput..

[6]  W. Donath Equivalence of memory to Random Logic , 1974 .

[7]  A. Michalos,et al.  Readings in Mathematical Social Science , 1968 .

[8]  Joseph W. Goodman,et al.  The Limitations of Interconnections in Providing Communication Between an Array of Points , 1991 .

[9]  Phillip Christie,et al.  CLOUDS, COMPUTERS AND COMPLEXITY , 1991 .

[10]  Joseph W. Goodman,et al.  The optimal electromagnetic carrier frequency balancing structural and metrical information densities with respect to heat removal requirements , 1992 .

[11]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[12]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[13]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[14]  W. Donath Wire length distribution for placements of computer logic , 1981 .

[15]  Haldun M. Ozaktas,et al.  Interpretation of the space-bandwidth product as the entropy of distinct connection patterns in multifacet optical interconnection architectures , 1993 .

[16]  P. Marchand,et al.  Grain-size considerations for optoelectronic multistage interconnection networks. , 1992, Applied optics.

[17]  Ivan E. Sutherland,et al.  How Big Should a Printed Circuit Board Be? , 1973, IEEE Transactions on Computers.

[18]  Frank Thomson Leighton,et al.  A Framework for Solving VLSI Graph Layout Problems , 1983, J. Comput. Syst. Sci..

[19]  H M Ozaktas,et al.  Comparison of fully three-dimensional optical, normally conducting, and superconducting interconnections. , 1999, Applied optics.

[20]  Charles E. Leiserson,et al.  Area-Efficient VLSI Computation , 1983 .

[21]  N. H. March,et al.  Order and Chaos in Nonlinear Physical Systems , 1988 .

[22]  William J. Dally,et al.  A VLSI Architecture for Concurrent Data Structures , 1987 .

[23]  Roy L. Russo On the Tradeoff Between Logic Performance and Circuit-to-Pin Ratio for LSI , 1972, IEEE Transactions on Computers.

[24]  W. Nakayama,et al.  Heat-transfer engineering in systems integration: outlook for closer coupling of thermal and electrical designs of computers , 1995 .

[25]  B. Mandelbrot THE PARETO-LEVY LAW AND THE DISTRIBUTION OF INCOME* , 1960 .

[26]  Haldun M. Ozaktas Levels of Abstraction in Computing Systems and Optical Interconnection Technology , 1998 .

[27]  Joseph W. Goodman,et al.  Comparison of local and global computation and its implications for the role of optical interconnections in future nanoelectronic systems , 1993 .

[28]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[29]  Joseph W. Goodman,et al.  Optimal linewidth distribution minimizing average signal delay for RC limited circuits , 1993 .

[30]  A. Masaki Electrical resistance as a limiting factor for high performance computer packaging , 1989, IEEE Circuits and Devices Magazine.

[31]  Haldun M. Ozaktas A physical approach to communication limits in computation , 1992 .

[32]  Haldun M. Ozaktas,et al.  Paradigms of connectivity for computer circuits and networks , 1992 .

[33]  Robert W. Keyes,et al.  The evolution of digital electronics towards VLSI , 1979 .

[34]  Phillip Christie,et al.  Fractal description of computer interconnections , 1991 .

[35]  J. Goodman,et al.  Lower bound for the communication volume required for an optically interconnected array of points , 1990 .

[36]  Abbas El Gamal,et al.  Two-dimensional stochastic model for interconnections in master-slice integrated circuits , 1981 .

[37]  Joseph W. Goodman,et al.  A three-dimensional optical interconnection architecture with minimal growth rate of system size , 1991 .

[38]  H M Ozaktas,et al.  Toward an optimal foundation architecture for optoelectronic computing. Part II. Physical construction and application platforms. , 1997, Applied optics.

[39]  J W Goodman,et al.  Implications of interconnection theory for optical digital computing. , 1992, Applied optics.

[40]  Joseph W. Goodman,et al.  Effect on scaling of heat removal requirements in three-dimensional systems , 1992 .

[41]  Walter Dandy,et al.  The Brain , 1966 .

[42]  D. K. Ferry Interconnection lengths and VLSI , 1985, IEEE Circuits and Devices Magazine.

[43]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[44]  Michael Feuer Connectivity of Random Logic , 1982, IEEE Transactions on Computers.

[45]  J W Goodman,et al.  Elements of a hybrid interconnection theory. , 1994, Applied optics.

[46]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[47]  Ernest S. Kuh,et al.  VLSI circuit layout : theory and design , 1985 .

[48]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[49]  R. Keyes Communication in computation , 1982 .

[50]  Phillip Christie,et al.  Design And Simulation Of Optically Interconnected Computer Systems , 1988, Other Conferences.

[51]  Joseph W. Goodman,et al.  Comparison of system size for some optical interconnection architectures and the folded multi-facet architecture , 1991 .

[52]  H M Ozaktas,et al.  Toward an optimal foundation architecture for optoelectronic computing. Part I. Regularly interconnected device planes. , 1997, Applied optics.

[53]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[54]  W. Nakayama On the accommodation of coolant flow paths in high-density packaging , 1990 .

[55]  D Mendlovic,et al.  Multistage optical interconnection architectures with the least possible growth of system size. , 1993, Optics letters.

[56]  William E. Donath,et al.  Placement and average interconnection lengths of computer logic , 1979 .

[57]  L. Pietronero,et al.  Fractals in Physics: Introductory Concepts , 1988 .

[58]  Joseph W. Goodman,et al.  Organization of information flow in computation for efficient utilization of high information flux communication media , 1992 .

[59]  Robert W. Keyes,et al.  The physics of VLSI systems , 1987, Microelectronics systems design series.

[60]  William R. Heller,et al.  Prediction of wiring space requirements for LSI , 1977, DAC '77.