Driver Lane Change Intention Recognition by Using Entropy-Based Fusion Techniques and Support Vector Machine Learning Strategy

[1]  Mohan M. Trivedi,et al.  Lane Change Intent Analysis Using Robust Operators and Sparse Bayesian Learning , 2005, IEEE Transactions on Intelligent Transportation Systems.

[2]  E. T. Jaynes,et al.  The Relation of Bayesian and Maximum Entropy Methods , 1988 .

[3]  L Tijerina,et al.  EXAMINATION OF LANE CHANGE CRASHES AND POTENTIAL IVHS COUNTERMEASURES. FINAL REPORT , 1993 .

[4]  Wilfried Elmenreich,et al.  The Time-Triggered Sensor Fusion Model , 2001 .

[5]  Richard M Michaels,et al.  BEHAVIORAL MODEL OF FREEWAY EXITING , 1990 .

[6]  Saïd Mammar,et al.  Time to line crossing for lane departure avoidance: a theoretical study and an experimental setting , 2006, IEEE Transactions on Intelligent Transportation Systems.

[7]  M. Bedworth,et al.  The Omnibus model: a new model of data fusion? , 2000 .

[8]  Louis Tijerina,et al.  Analytical Evaluation of Warning Onset Rules for Lane Change Crash Avoidance Systems , 1997 .

[9]  Xiangjing An,et al.  A Novel Approach to Provide Lane Departure Warning Using Only One Forward-Looking Camera , 2006, International Symposium on Collaborative Technologies and Systems (CTS'06).

[10]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[11]  Brian A. Baertlein,et al.  Feature-Level and Decision-Level Fusion of Noncoincidently Sampled Sensors for Land Mine Detection , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  J. Hanley,et al.  A method of comparing the areas under receiver operating characteristic curves derived from the same cases. , 1983, Radiology.

[13]  D. Parker,et al.  Anger and aggression among drivers in three European countries. , 2002, Accident; analysis and prevention.

[14]  N. D. Geddes Understanding human operators' intentions in complex systems , 1990 .

[15]  Dario D. Salvucci,et al.  Toward a Unified Framework for Tracking Cognitive Processes , 2003 .

[16]  Dario D. Salvucci,et al.  The time course of a lane change: Driver control and eye-movement behavior , 2002 .

[17]  Joe Lee,et al.  Characterizing and Modeling Observed Lane-Changing Behavior: Lane-Vehicle-Based Microscopic Simulation on Urban Street Network , 2000 .

[18]  Wei Ji Ma,et al.  Comparing Bayesian models for multisensory cue combination without mandatory integration , 2007, NIPS.

[19]  Moshe Ben-Akiva,et al.  MODELS OF FREEWAY LANE CHANGING AND GAP ACCEPTANCE BEHAVIOR , 1996 .

[20]  Helen C. Shen,et al.  Entropy-Based Markov Chains for Multisensor Fusion , 2000, J. Intell. Robotic Syst..

[21]  Margaret M. Peden,et al.  World Report on Road Traffic Injury Prevention , 2004 .

[22]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[23]  C. Ray Smith,et al.  Maximum-entropy and Bayesian methods in science and engineering , 1988 .

[24]  Christopher D. Brown,et al.  Receiver operating characteristics curves and related decision measures: A tutorial , 2006 .

[25]  Tomohiro Yamamura,et al.  A Driver Behavior Recognition Method Based on a Driver Model Framework , 2000 .

[26]  Alex Pentland,et al.  Modeling and Prediction of Human Behavior , 1999, Neural Computation.

[27]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[28]  Dario D. Salvucci Inferring Driver Intent: A Case Study in Lane-Change Detection , 2004 .

[29]  Ted R. Miller,et al.  THE ECONOMIC IMPACT OF MOTOR VEHICLE CRASHES, 2000 , 2002 .

[30]  X. Huang,et al.  A vision-based hybrid method for facial expression recognition , 2008, Ambi-Sys '08.

[31]  Qiang Ji,et al.  A probabilistic framework for modeling and real-time monitoring human fatigue , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[32]  J. Goldberg Economic impact of motor vehicle crashes. , 2002, Annals of Emergency Medicine.

[33]  D. Kirsh,et al.  Proceedings of the 25th annual conference of the Cognitive Science Society , 2003 .

[34]  Thierry Fraichard,et al.  Multi-sensor data fusion using Bayesian programming : an automotive application , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.