Soft actuators of organized self-oscillating microgels

Autonomously oscillating soft actuators have been successfully obtained by assembling pre-existing microgel particles. The amplitude of the actuator's oscillation could be controlled by selecting the types of oscillations of constituent microelements, i.e., swelling–deswelling or cooperative dispersing–flocculating motion of the microgels. The new actuators prepared by this fabrication process make the oscillating actuators suitable for practical use in microfluidic devices such as self-beating micropumps.

[1]  R. Yoshida,et al.  Aspects of the Belousov−Zhabotinsky Reaction in Polymer Gels , 1999 .

[2]  Akinori Komura,et al.  Polymer Gel Light‐Modulation Materials Imitating Pigment Cells , 2002 .

[3]  Yoshihito Osada,et al.  Effects of hydrophobic interaction on the cooperative binding of a surfactant to a polymer network , 1994 .

[4]  Toshihiro Hirai,et al.  Electrically Active Artificial Pupil Showing Amoeba‐Like Pseudopodial Deformation , 2009 .

[5]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[6]  R. Yoshida,et al.  Self-Oscillating Gel , 1996 .

[7]  A. Balazs,et al.  Pattern Formation and Shape Changes in Self-Oscillating Polymer Gels , 2006, Science.

[8]  Anna C. Balazs,et al.  Modeling autonomously oscillating chemo-responsive gels , 2010 .

[9]  Daisuke Suzuki,et al.  Autonomously oscillating viscosity in microgel dispersions. , 2009, Journal of the American Chemical Society.

[10]  P. Ruoff Antagonistic balance in the oregonator: about the possibility of temperature-compensation in the Belousov-Zhabotinsky , 1995 .

[11]  Ryo Yoshida,et al.  Self‐Oscillating Gels Driven by the Belousov–Zhabotinsky Reaction as Novel Smart Materials , 2010, Advanced materials.

[12]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[13]  T. Norisuye,et al.  Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature , 2002 .

[14]  Toyoichi Tanaka,et al.  Volume phase transition in a nonionic gel , 1984 .

[15]  R. Yoshida,et al.  Temporal Control of Self-Oscillation for Microgels by Cross-Linking Network Structure , 2008 .

[16]  T. Tatsuma,et al.  UV‐Light‐Induced Swelling and Visible‐Light‐Induced Shrinking of a TiO2‐Containing Redox Gel , 2007 .

[17]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[18]  R. Yoshida,et al.  Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system. , 2008, The journal of physical chemistry. B.

[19]  Bing Xu,et al.  Post-self-assembly cross-linking of molecular nanofibers for oscillatory hydrogels. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[21]  M. Heskins,et al.  Solution Properties of Poly(N-isopropylacrylamide) , 1968 .

[22]  B. Hess,et al.  Gel systems for the Belousov-Zhabotinskii reaction , 1991 .

[23]  Daisuke Suzuki,et al.  Self-flocculating/self-dispersing oscillation of microgels. , 2008, Angewandte Chemie.

[24]  M. Zrínyi,et al.  Direct observation of abrupt shape transition in ferrogels induced by nonuniform magnetic field , 1997 .

[25]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.