MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution

This paper presents a performance analysis of the MUltiple SIgnal Classification (MUSIC) algorithm applied on D dimensional single-snapshot spectral estimation while s true frequencies are located on the continuum of a bounded domain. Inspired by the matrix pencil form, we construct a D-fold Hankel matrix from the measurements and exploit its Vandermonde decomposition in the noiseless case. MUSIC amounts to identifying a noise subspace, evaluating a noise-space correlation function, and localizing frequencies by searching the s smallest local minima of the noise-space correlation function. In the noiseless case, (2s)D measurements guarantee an exact reconstruction by MUSIC as the noise-space correlation function vanishes exactly at true frequencies. When noise exists, we provide an explicit estimate on the perturbation of the noise-space correlation function in terms of noise level, dimension D, the minimum separation among frequencies, the maximum and minimum amplitudes while frequencies are separated by 2 Rayleigh Length (RL) at each direction. As a by-product the maximum and minimum non-zero singular values of the multidimensional Vandermonde matrix whose nodes are on the unit sphere are estimated under a gap condition of the nodes. Under the 2-RL separation condition, if noise is i.i.d. Gaussian, we show that perturbation of the noise-space correlation function decays like √(log(#(N))/#(N)) as the sample size #(N) increases. When the separation among frequencies drops below 2 RL, our numerical experiments show that the noise tolerance of MUSIC obeys a power law with the minimum separation of frequencies.

[1]  D. Donoho Superresolution via sparsity constraints , 1992 .

[2]  Albert Fannjiang,et al.  The MUSIC algorithm for sparse objects: a compressed sensing analysis , 2010, ArXiv.

[3]  Benjamin Friedlander A sensitivity analysis of the MUSIC algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  J. Vaaler SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .

[5]  H. Lev-Ari,et al.  The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).

[6]  J.H. McClellan,et al.  Multidimensional spectral estimation , 1982, Proceedings of the IEEE.

[7]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[8]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[9]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[10]  J. Vaaler,et al.  Some Extremal Functions in Fourier Analysis, III , 1985, 0809.4053.

[11]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[12]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[13]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[14]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[15]  N. Kalouptsidis,et al.  Spectral analysis , 1993 .

[16]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[17]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[18]  Wenjing Liao,et al.  Mismatch and resolution in compressive imaging , 2011, Optical Engineering + Applications.

[19]  Weiyu Xu,et al.  Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies , 2013, 2014 Information Theory and Applications Workshop (ITA).

[20]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[21]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[22]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[23]  M. Urner Scattered Data Approximation , 2016 .

[24]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[25]  Yuxin Chen,et al.  Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.

[26]  A. Lee Swindlehurst,et al.  A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors: Part &-Multidimensional Algorithms , 1993 .

[27]  Atle Selberg,et al.  Lectures on sieves , 2002 .

[28]  B. M. Båth,et al.  Spectral Analysis in Geophysics , 2016 .

[29]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[30]  A. Fannjiang,et al.  Compressive inverse scattering: II. Multi-shot SISO measurements with born scatterers , 2010 .

[31]  A. Ingham Some trigonometrical inequalities with applications to the theory of series , 1936 .

[32]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[33]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[34]  Emmanuel J. Candès,et al.  Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..

[35]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[36]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[37]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[38]  B. Borden,et al.  Fundamentals of Radar Imaging , 2009 .

[39]  A. Lee Swindlehurst,et al.  A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .

[40]  D. Potts,et al.  Parameter estimation for multivariate exponential sums , 2011 .

[41]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[42]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[43]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[44]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[45]  Wenjing Liao MUSIC for joint frequency estimation: Stability with compressive measurements , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[46]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[47]  Yingbo Hua,et al.  Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[48]  F. Li,et al.  Performance analysis for DOA estimation algorithms: unification, simplification, and observations , 1993 .

[49]  Adriaan van den Bos,et al.  Resolution: a survey , 1997 .