MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution
暂无分享,去创建一个
[1] D. Donoho. Superresolution via sparsity constraints , 1992 .
[2] Albert Fannjiang,et al. The MUSIC algorithm for sparse objects: a compressed sensing analysis , 2010, ArXiv.
[3] Benjamin Friedlander. A sensitivity analysis of the MUSIC algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..
[4] J. Vaaler. SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .
[5] H. Lev-Ari,et al. The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).
[6] J.H. McClellan,et al. Multidimensional spectral estimation , 1982, Proceedings of the IEEE.
[7] Petre Stoica,et al. MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.
[8] Ralph Otto Schmidt,et al. A signal subspace approach to multiple emitter location and spectral estimation , 1981 .
[9] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[10] J. Vaaler,et al. Some Extremal Functions in Fourier Analysis, III , 1985, 0809.4053.
[11] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[12] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[13] Laurent Demanet,et al. The recoverability limit for superresolution via sparsity , 2015, ArXiv.
[14] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[15] N. Kalouptsidis,et al. Spectral analysis , 1993 .
[16] L. Carleson,et al. The Collected Works of Arne Beurling , 1989 .
[17] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[18] Wenjing Liao,et al. Mismatch and resolution in compressive imaging , 2011, Optical Engineering + Applications.
[19] Weiyu Xu,et al. Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies , 2013, 2014 Information Theory and Applications Workshop (ITA).
[20] Thomas Strohmer,et al. Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..
[21] K. Arun,et al. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .
[22] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[23] M. Urner. Scattered Data Approximation , 2016 .
[24] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[25] Yuxin Chen,et al. Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.
[26] A. Lee Swindlehurst,et al. A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors: Part &-Multidimensional Algorithms , 1993 .
[27] Atle Selberg,et al. Lectures on sieves , 2002 .
[28] B. M. Båth,et al. Spectral Analysis in Geophysics , 2016 .
[29] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[30] A. Fannjiang,et al. Compressive inverse scattering: II. Multi-shot SISO measurements with born scatterers , 2010 .
[31] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[32] A. Robert Calderbank,et al. Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..
[33] Ankur Moitra,et al. Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.
[34] Emmanuel J. Candès,et al. Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..
[35] Marco F. Duarte,et al. Spectral compressive sensing , 2013 .
[36] Yingbo Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..
[37] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[38] B. Borden,et al. Fundamentals of Radar Imaging , 2009 .
[39] A. Lee Swindlehurst,et al. A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .
[40] D. Potts,et al. Parameter estimation for multivariate exponential sums , 2011 .
[41] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[42] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[43] Wenjing Liao,et al. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.
[44] Yuxin Chen,et al. Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.
[45] Wenjing Liao. MUSIC for joint frequency estimation: Stability with compressive measurements , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).
[46] Wenjing Liao,et al. Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..
[47] Yingbo Hua,et al. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[48] F. Li,et al. Performance analysis for DOA estimation algorithms: unification, simplification, and observations , 1993 .
[49] Adriaan van den Bos,et al. Resolution: a survey , 1997 .