Lithium-ion battery performance improvement based on capacity recovery exploitation

[1]  Ganesan Nagasubramanian,et al.  Modeling capacity fade in lithium-ion cells , 2005 .

[2]  Ralph E. White,et al.  Calendar life performance of pouch lithium-ion cells , 2005 .

[3]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[4]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[5]  Robert Kostecki,et al.  Diagnostic Evaluation of Detrimental Phenomena in High-Power Lithium-Ion Batteries , 2005 .

[6]  Shi-Gang Sun,et al.  An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4 , 2010 .

[7]  A. Eddahech,et al.  Ageing monitoring of lithium-ion cell during power cycling tests , 2011, Microelectron. Reliab..

[8]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[9]  Hosam K. Fathy,et al.  Optimal Control of Film Growth in Lithium-Ion Battery Packs via Relay Switches , 2011, IEEE Transactions on Industrial Electronics.

[10]  I. Bloom,et al.  Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes , 2011 .

[11]  Kyung-Hee Park,et al.  Improvement of flexible lithium battery shelf life by pre-discharging , 2011 .

[12]  R. G. Downing,et al.  Neutron depth profiling technique for studying aging in Li-ion batteries , 2011 .

[13]  H. Jannesari,et al.  Effect of electrolyte transport properties and variations in the morphological parameters on the var , 2011 .

[14]  Olfa Kanoun,et al.  Generalization of transmission line models for deriving the impedance of diffusion and porous media , 2012 .

[15]  Li Lu,et al.  Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries , 2012 .

[16]  R. G. Downing,et al.  Discovery of lithium in copper current collectors used in batteries , 2012 .

[17]  Sylvie Grugeon,et al.  Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis , 2012 .

[18]  Balaji Krishnamurthy,et al.  A capacity fade model for lithium-ion batteries including diffusion and kinetics , 2012 .

[19]  Jean-Michel Vinassa,et al.  Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks , 2012 .

[20]  B. Lucht,et al.  Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries , 2012 .

[21]  Jean-Michel Vinassa,et al.  Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications , 2012, Microelectron. Reliab..

[22]  Dan Zenkert,et al.  Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries , 2012 .

[23]  Michael Buchholz,et al.  Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods , 2013 .

[24]  Jean-Michel Vinassa,et al.  Online parameter identification for real-time supercapacitor performance estimation in automotive applications , 2013 .

[25]  J. Fergus,et al.  Lithium Ion Battery Anode Aging Mechanisms , 2013, Materials.

[26]  Wei Zhao,et al.  An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries , 2013 .

[27]  Wen-Yeau Chang,et al.  Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA , 2013 .

[28]  N. Omar,et al.  Comparison of commercial battery cells in relation to material properties , 2013 .

[29]  François Weill,et al.  Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[30]  Zechang Sun,et al.  Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles , 2013 .