Sonochemistry : historical developments and modern aspects

Abstract Four types of sonochemical reactions are known; 1, the acceleration of conventional reactions; 2, redox processes in aqueous solution; 3, the degradation of polymers; and 4, the decomposition of and reactions in organic solvents. The electrical discharge theory, developed in the late thirties, was gradually substituted by hot spot theories after a bank of knowledge had been accumulated about the behaviour of cavitation bubbles in sonic fields. Sonochemical reaction may take place in hot gas bubbles, and these gas reactions may be understood in terms of what is known from combustion chemistry. Other reactions occur in the cooler interfacial region between the gas bubble and the liquid, and these reactions may be discussed in the light of radiation chemistry of solutions. Solute molecules may be decomposed by free radical attack (indirect action) and by direct thermal action. An important feature in the kinetics of these reactions is the accumulation of solute molecules at the interface, a process depending on their hydrophobicity. Finally, the chemical effects of pulsed ultrasound are described and discussed with respect to the use of ultrasonic pulses in medical diagnosis.

[1]  Von F. A. Henglein Die Bildung von Graftpolymeren aus Polyacrylamid und Acrylnitril unter dem Einfluß von Ultraschallwellen , 1954 .

[2]  M. Anbar,et al.  Selected specific rates of reactions of transients from water in aqueous solution. 1. Hydrated electron , 1973 .

[3]  A. Henglein,et al.  Scavenging of OH radicals produced in the sonolysis of water. , 1985, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[4]  M. Anbar,et al.  Ultrasound Chemical Effects on Pure Organic Liquids , 1965, Science.

[5]  H. Rust Untersuchungen zur Klärung chemischer Wirkungen des Ultraschalls , 1953 .

[6]  J. Sullivan,et al.  Chemical Effects of Ultrasonics—``Hot Spot'' Chemistry , 1956 .

[7]  S. Brohult Splitting of the Hæmocyanin Molecule by Ultra-sonic Waves , 1937, Nature.

[8]  M. Minnarert,et al.  Musical air-bubbles and the sound of running water , 1933 .

[9]  H. Rust Untersuchungen zur Klärung einiger chemischer Wirkungen des Ultraschalls , 1952 .

[10]  Magdi M. Mossoba,et al.  Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms , 1983 .

[11]  A. Henglein,et al.  Sonolytic decomposition of nitrous oxide in aqueous solution , 1986 .

[12]  A. Henglein,et al.  Sonolysis of ozone in aqueous solution , 1986 .

[13]  A. Henglein,et al.  Isotopic exchange in the sonolysis of aqueous solutions containing nitrogen-14 and nitrogen-15 molecules , 1986 .

[14]  A. Weissler Formation of Hydrogen Peroxide by Ultrasonic Waves: Free Radicals , 1959 .

[15]  Lawrence A. Crum,et al.  Bjerknes forces on bubbles in a stationary sound field , 1975 .

[16]  P. Kruus Polymerization resulting from ultrasonic cavitation , 1983 .

[17]  Robert E. Apfel,et al.  Acoustic cavitation inception , 1984 .

[18]  F. G. Blake Bjerknes Forces in Stationary Sound Fields , 1949 .

[19]  N. Miller Chemical action of sound waves on aqueous solutions , 1950 .

[20]  JOSEPH WEISS,et al.  Radiochemistry of Aqueous Solutions , 1944, Nature.

[21]  Von F. A. Henglein Die reaktion des α, α-diphenyl-β-pikryl-hydrazyls mit langkettigen freien radikalen, die beim ultraschallabbau von polymethacrylsäuremethylester gebildet werden , 1955 .

[22]  A. Henglein,et al.  Ultrasonic irradiation of water in the presence of oxygen 18,18O2: isotope exchange and isotopic distribution of hydrogen peroxide , 1986 .

[23]  Farhataziz,et al.  Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions , 1977 .

[24]  A. Henglein,et al.  Chemical reactions by pulsed ultrasound: memory effects in the formation of NO3- and NO2- in aerated water. , 1986, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[25]  A. Henglein,et al.  Hydrogen/deuterium isotope exchange in the molecular deuterium-water system under the influence of ultrasound , 1986 .

[26]  A. Henglein,et al.  Free Radical and Free Atom Reactions in the Sonolysis of Aqueous Iodide and Formate Solutions , 1985 .

[27]  William T. Richards,et al.  THE CHEMICAL EFFECTS OF HIGH FREQUENCY SOUND WAVES I. A PRELIMINARY SURVEY , 1927 .

[28]  L. Crum Measurements of the growth of air bubbles by rectified diffusion , 1980 .

[29]  Lawrence A. Crum,et al.  Nucleation and stabilization of microbubbles in liquids , 1982 .

[30]  K. Suslick,et al.  Sonochemistry in non-aqueous liquids , 1984 .

[31]  I. E. Ėlʹpiner Ultrasound : physical, chemical, and biological effects , 1964 .

[32]  C. Sehgal,et al.  Optical spectra of sonoluminescence from transient and stable cavitation in water saturated with various gases , 1980 .