Convergence factors of Newton methods for nonlinear eigenvalue problems

Abstract Consider a complex sequence { λ k } k = 0 ∞ convergent to λ ∗ ∈ C with order p ∈ N . The convergence factor is typically defined as the fraction c k : = ( λ k + 1 - λ ∗ ) / ( λ k - λ ∗ ) p in the limit k → ∞ . In this paper, we prove formulas characterizing c k in the limit k → ∞ for two different Newton-type methods for nonlinear eigenvalue problems. The formulas are expressed in terms of the left and right eigenvectors. The two treated methods are called the method of successive linear problems (MSLP) and augmented Newton and are widely used in the literature. We prove several explicit formulas for c k for both methods. Formulas for both methods are found for simple as well as double eigenvalues. In some cases, we observe in examples that the limit c k as k → ∞ does not exist. For cases where this limit does not appear to exist, we prove other limiting expressions such that a characterization of c k in the limit is still possible.

[1]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[2]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[3]  P. Lancaster,et al.  On the perturbation of analytic matrix functions , 1999 .

[4]  Wim Michiels,et al.  Invariance properties in the root sensitivity of time-delay systems with double imaginary roots , 2010, Autom..

[5]  Elias Jarlebring spectrum of delay-differential equationsThe : numerical methods, stability and perturbation , 2008 .

[6]  A. M. Ostrowski,et al.  On the convergence of the rayleigh quotient iteration for the computation of the characteristic roots and vectors. II , 1958 .

[7]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[8]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[9]  P. Lancaster A generalised rayleigh quotient iteration for lambda-matrices , 1961 .

[10]  A. Ostrowski On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. V , 1959 .

[11]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[12]  Hubert Schwetlick,et al.  Zentrum für Informationsdienste und Hochleistungsrechnen ( ZIH ) A primal-dual Jacobi – Davidson-like method for nonlinear eigenvalue problems , 2007 .

[13]  J. Schröder,et al.  Über das Newtonsche verfahren , 1957 .

[14]  V. Kublanovskaya On an Approach to the Solution of the Generalized Latent Value Problem for $\lambda $-Matrices , 1970 .

[15]  On Kublanovskaya''s approach to the solution of the generalized latent value problem for functional , 1983 .

[16]  L. B. Rall,et al.  The solution of characteristic value-vector problems by Newton's method , 1968 .

[17]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[18]  Wei H. Yang,et al.  A method for eigenvalues of sparse λ-matrices , 1983 .

[19]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[20]  Ilse C. F. Ipsen Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..

[21]  Alastair Spence,et al.  Convergence of inexact inverse iteration with application to preconditioned iterative solves , 2007 .

[22]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[23]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[24]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[25]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[26]  Heinrich Voß,et al.  Numerical methods for sparse nonlinear eigenvalue problems , 2004 .

[27]  Kathrin Schreiber,et al.  Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals , 2008 .

[28]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[29]  L. B. Rall A Note on the Convergence of Newton’s Method , 1974 .

[30]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[31]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[32]  H. Unger,et al.  Nichtlineare Behandlung von Eigenwertaufgaben , 1950 .

[33]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .