Convergence factors of Newton methods for nonlinear eigenvalue problems
暂无分享,去创建一个
[1] P. Lancaster,et al. Factorization of selfadjoint matrix polynomials with constant signature , 1982 .
[2] J. H. Wilkinson,et al. Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .
[3] P. Lancaster,et al. On the perturbation of analytic matrix functions , 1999 .
[4] Wim Michiels,et al. Invariance properties in the root sensitivity of time-delay systems with double imaginary roots , 2010, Autom..
[5] Elias Jarlebring. spectrum of delay-differential equationsThe : numerical methods, stability and perturbation , 2008 .
[6] A. M. Ostrowski,et al. On the convergence of the rayleigh quotient iteration for the computation of the characteristic roots and vectors. II , 1958 .
[7] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[8] Dirk Roose,et al. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.
[9] P. Lancaster. A generalised rayleigh quotient iteration for lambda-matrices , 1961 .
[10] A. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. V , 1959 .
[11] Daniel Kressner,et al. A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.
[12] Hubert Schwetlick,et al. Zentrum für Informationsdienste und Hochleistungsrechnen ( ZIH ) A primal-dual Jacobi – Davidson-like method for nonlinear eigenvalue problems , 2007 .
[13] J. Schröder,et al. Über das Newtonsche verfahren , 1957 .
[14] V. Kublanovskaya. On an Approach to the Solution of the Generalized Latent Value Problem for $\lambda $-Matrices , 1970 .
[15] On Kublanovskaya''s approach to the solution of the generalized latent value problem for functional , 1983 .
[16] L. B. Rall,et al. The solution of characteristic value-vector problems by Newton's method , 1968 .
[17] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[18] Wei H. Yang,et al. A method for eigenvalues of sparse λ-matrices , 1983 .
[19] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[20] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[21] Alastair Spence,et al. Convergence of inexact inverse iteration with application to preconditioned iterative solves , 2007 .
[22] V. Mehrmann,et al. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .
[23] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[24] Nicholas J. Higham,et al. NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.
[25] Timo Betcke,et al. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..
[26] Heinrich Voß,et al. Numerical methods for sparse nonlinear eigenvalue problems , 2004 .
[27] Kathrin Schreiber,et al. Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals , 2008 .
[28] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[29] L. B. Rall. A Note on the Convergence of Newton’s Method , 1974 .
[30] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .
[31] Axel Ruhe. ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .
[32] H. Unger,et al. Nichtlineare Behandlung von Eigenwertaufgaben , 1950 .
[33] S. Niculescu,et al. Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .