Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions

[1]  Elizabeth Head,et al.  Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human down syndrome brains. , 2013, The Journal of Biological Chemistry.

[2]  C. Garner,et al.  Emerging Pharmacotherapies for Neurodevelopmental Disorders , 2010, Journal of developmental and behavioral pediatrics : JDBP.

[3]  F. Gage,et al.  LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? , 2010, Trends in Neurosciences.

[4]  Mara Dierssen,et al.  Cognitive deficits and associated neurological complications in individuals with Down's syndrome , 2010, The Lancet Neurology.

[5]  George Stoica,et al.  A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. , 2010, Human molecular genetics.

[6]  T. Hughes,et al.  Most “Dark Matter” Transcripts Are Associated With Known Genes , 2010, PLoS biology.

[7]  K. Gardiner Molecular basis of pharmacotherapies for cognition in Down syndrome. , 2010, Trends in pharmacological sciences.

[8]  P. Aisen,et al.  Restoration of Norepinephrine-Modulated Contextual Memory in a Mouse Model of Down Syndrome , 2009, Science Translational Medicine.

[9]  G. Nuovo,et al.  Chromosome 21-derived MicroRNAs Provide an Etiological Basis for Aberrant Protein Expression in Human Down Syndrome Brains* , 2009, The Journal of Biological Chemistry.

[10]  Y. Hérault,et al.  A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome , 2009, Human molecular genetics.

[11]  C. Wahlestedt,et al.  Regulatory roles of natural antisense transcripts , 2009, Nature Reviews Molecular Cell Biology.

[12]  J. Goodrich,et al.  InvAluable junk: The cellular impact and function of Alu and B2 RNAs , 2009, IUBMB life.

[13]  T. Borodina,et al.  Transcriptome analysis by strand-specific sequencing of complementary DNA , 2009, Nucleic acids research.

[14]  H. Zentgraf,et al.  Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1 , 2009, The Journal of cell biology.

[15]  W. Linehan,et al.  Inhibition of Tumor Cell Motility by the Interferon-inducible GTPase MxA* , 2009, Journal of Biological Chemistry.

[16]  Elizabeth M.C. Fisher,et al.  Down syndrome—recent progress and future prospects , 2009, Human molecular genetics.

[17]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[18]  J. Einasto Dark Matter , 2011, Brazilian Journal of Physics.

[19]  P. Whitaker-Azmitia,et al.  Vitamin E increases S100B‐mediated microglial activation in an S100B‐overexpressing mouse model of pathological aging , 2008, Glia.

[20]  Tim R. Mercer,et al.  Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities , 2008, PLoS Comput. Biol..

[21]  D. Corey,et al.  Antisense transcripts are targets for activating small RNAs , 2008, Nature Structural &Molecular Biology.

[22]  M. Dierssen,et al.  Down syndrome and the genes of human chromosome 21: current knowledge and future potentials , 2008, Cytogenetic and Genome Research.

[23]  K. Devriendt,et al.  Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism , 2008, Science.

[24]  William C Earnshaw,et al.  Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling , 2008, Nature Genetics.

[25]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[26]  F. Di Cunto,et al.  The Down syndrome critical region protein TTC3 inhibits neuronal differentiation via RhoA and Citron kinase , 2007, Journal of Cell Science.

[27]  T. Gingeras,et al.  Genome-wide transcription and the implications for genomic organization , 2007, Nature Reviews Genetics.

[28]  N. Nowak,et al.  Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. , 2007, Human molecular genetics.

[29]  Charlotte N. Henrichsen,et al.  Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions. , 2007, Genome research.

[30]  M. Pletnikov,et al.  Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice. , 2007, Human molecular genetics.

[31]  K. Gardiner,et al.  The proteins of human chromosome 21 , 2006, American journal of medical genetics. Part C, Seminars in medical genetics.

[32]  J. Harrow,et al.  GENCODE: producing a reference annotation for ENCODE , 2006, Genome Biology.

[33]  M. Jamon,et al.  Mouse Models of Cognitive Disorders in Trisomy 21: A Review , 2006, Behavior genetics.

[34]  James G. R. Gilbert,et al.  The vertebrate genome annotation (Vega) database , 2004, Nucleic Acids Res..

[35]  M. Hattori,et al.  DNA sequence and comparative analysis of chimpanzee chromosome 22 , 2004, Nature.

[36]  Shinsei Minoshima,et al.  A cluster of 21 keratin-associated protein genes within introns of another gene on human chromosome 21q22.3. , 2004, Genomics.

[37]  Katheleen Gardiner,et al.  Mouse models of Down syndrome: how useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. , 2003, Gene.

[38]  K. Gardiner,et al.  Annotation of human chromosome 21 for relevance to Down syndrome: gene structure and expression analysis. , 2002, Genomics.

[39]  W. Tam Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. , 2001, Gene.

[40]  M. Hattori,et al.  The DNA sequence of human chromosome 21 , 2000, Nature.