The decoupling of damped linear systems in free or forced vibration

Abstract The purpose of this paper is to extend classical modal analysis to decouple any viscously damped linear system in non-oscillatory free vibration or in forced vibration. Based upon an exposition of how exponential decay in a system can be regarded as imaginary oscillations, the concept of damped modes of imaginary vibration is introduced. By phase synchronization of these real and physically excitable modes, a time-varying transformation is constructed to decouple non-oscillatory free vibration. When time drifts caused by viscous damping and by external excitation are both accounted for, a time-varying decoupling transformation for forced vibration is derived. The decoupling procedure devised herein reduces to classical modal analysis for systems that are undamped or classically damped. This paper constitutes the second and final part of a solution to the “classical decoupling problem.” Together with an earlier paper, a general methodology that requires only the solution of a quadratic eigenvalue problem is developed to decouple any damped linear system.

[1]  I. Stakgold Green's Functions and Boundary Value Problems , 1979 .

[2]  R. Walde,et al.  Introduction to Lie groups and Lie algebras , 1973 .

[3]  Wanping Zheng,et al.  Quantification of non-proportionality of damping in discrete vibratory systems , 2000 .

[4]  F. R. Vigneron A Natural Modes Model and Modal Identities for Damped Linear Structures , 1986 .

[5]  S. M. Shahruz,et al.  Approximate Decoupling of the Equations of Motion of Linear Underdamped Systems , 1988 .

[6]  George C. Lee,et al.  An Index of Damping Non-Proportionality for Discrete Vibrating Systems , 1994 .

[7]  W. Gawronski Dynamics and control of structures : a modal approach , 1998 .

[8]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[9]  M. F. Rubinstein,et al.  Dynamics of structures , 1964 .

[10]  K. Foss COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF DAMPED LINEAR DYNAMIC SYSTEMS , 1956 .

[11]  Wanping Zheng,et al.  Evaluation of damping non-proportionality using identified modal information , 2001 .

[12]  James K. Knowles,et al.  On the approximation of damped linear dynamical systems , 2006 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[15]  Chong-Won Lee,et al.  Dynamic reanalysis of weakly non-proportionally damped systems , 1986 .

[16]  Daniel J. Inman,et al.  Frequency Response of Nonproportionally Damped, Lumped Parameter, Linear Dynamic Systems , 1990 .

[17]  M. Friswell,et al.  CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART II: ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS , 2002 .

[18]  Peter J. Olver Introduction to Lie Groups , 1986 .

[19]  James M. Kelly,et al.  Seismic response of the superstructure and attached equipment in a base‐isolated building , 1989 .

[20]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[21]  Firdaus E. Udwadia,et al.  Nonclassically Damped Dynamic Systems: An Iterative Approach , 1990 .

[22]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[23]  W. J. Duncan,et al.  Elementary matrices and some applications to dynamics and differential equations , 1939 .

[24]  Andres Soom,et al.  Mechanical Vibration Analysis and Computation , 1989 .

[25]  J. S. Kim,et al.  Characteristics of Modal Coupling in Nonclassically Damped Systems Under Harmonic Excitation , 1994 .

[26]  M. Chu,et al.  Total decoupling of general quadratic pencils, Part I: Theory , 2008 .

[27]  Ray W. Clough,et al.  Earthquake response analysis considering non‐proportional damping , 1976 .

[28]  D. L. Cronin,et al.  Approximation for Determining Harmonically Excited Response of Nonclassically Damped Systems , 1976 .

[29]  James M. Kelly,et al.  Non‐classical damping in dynamic analysis of base‐isolated structures with internal equipment , 1988 .

[30]  A. Sestieri,et al.  Analysis Of Errors And Approximations In The Use Of Modal Co-Ordinates , 1994 .

[31]  Peter Lancaster,et al.  DIAGONALIZABLE QUADRATIC EIGENVALUE PROBLEMS , 2009 .

[32]  M. Friswell,et al.  CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART I: GENERAL TRANSFORMATIONS , 2002 .

[33]  L. Rayleigh,et al.  The theory of sound , 1894 .

[34]  Thomas K. Caughey,et al.  Complex Modes and Solvability of Nonclassical Linear Systems , 1993 .

[35]  Rajendra Singh,et al.  Quantification of the extent of non-proportional viscous damping in discrete vibratory systems , 1986 .

[36]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[37]  Gene H. Golub,et al.  Matrix computations , 1983 .

[38]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[39]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[40]  황재혁 On the Approximate Solution of Nonclassically Damped Linear Systems , 1991 .

[41]  C. Ventura,et al.  MODAL ANALYSIS OF NON-CLASSICALLY DAMPED LINEAR SYSTEMS , 1986 .

[42]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[43]  Uwe Prells,et al.  A Relationship Between Defective Systems and Unit-Rank Modification of Classical Damping , 2000 .

[44]  W. Brogan Modern Control Theory , 1971 .

[45]  F. R. Gantmakher The Theory of Matrices , 1984 .

[46]  Tom M. Apostol,et al.  Mathematical analysis : a modern approach to advanced calculus / Tom M. Apostol , 1957 .

[47]  Thomas K. Caughey,et al.  Analysis of Linear Nonconservative Vibrations , 1995 .

[48]  R. Singh,et al.  Examination of the validity of proportional damping approximations with two further numerical indices , 1986 .

[49]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[50]  Tetsuji Itoh Damped vibration mode superposition method for dynamic response analysis , 1973 .

[51]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[52]  Takeru Igusa,et al.  Dynamic characteristics of non‐classically damped structures , 1991 .

[53]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[54]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[55]  Matthias Morzfeld,et al.  The decoupling of damped linear systems in oscillatory free vibration , 2009 .

[56]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[57]  Stephen F. Felszeghy,et al.  On Uncoupling and Solving the Equations of Motion of Vibrating Linear Discrete Systems , 1993 .

[58]  M. Morzfeld,et al.  Diagonal dominance of damping and the decoupling approximation in linear vibratory systems , 2009 .

[59]  Atul Bhaskar,et al.  Estimates of errors in the frequency response of non-classically damped systems , 1995 .

[60]  M. Rayner,et al.  Mathematics for the Physical Sciences , 1969 .

[61]  M. Chu,et al.  Total decoupling of general quadratic pencils, Part II: Structure preserving isospectral flows , 2008 .