Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies

Abstract This paper presents an extensive numerical analysis of the thermal behavior of InGaP/GaAs HBTs for handset applications in a laminate (package) environment. Both wire-bonding and flip-chip technologies are examined. The combination between an accurate, yet fast, simulation capability and the Design of Experiments technique is employed to quantify the impact of all the key technology parameters and explore a wide range of operating conditions.

[1]  V. d'Alessandro,et al.  Analysis of the Influence of Layout and Technology Parameters on the Thermal Impedance of GaAs HBT/BiFET Using a Highly-Efficient Tool , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[2]  J. Lienhard A heat transfer textbook , 1981 .

[3]  Dritan Celo,et al.  A simplified model for the effect of interfinger metal on maximum temperature rise in a multifinger bipolar transistor , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[5]  V. d'Alessandro,et al.  Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAs HBTs , 2017, 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[6]  Jung-Hua Chou,et al.  An effective device design for thermal management of multifinger InGaP/GaAs collector‐up HBTs , 2013 .

[7]  L. L. Liou,et al.  The effect of thermal shunt on the current instability of multiple-emitter-finger heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[8]  Wen-Chau Liu,et al.  Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors , 1993 .

[9]  Hadis Morkoç,et al.  The effects of surface metallization on the thermal behavior of GaAs microwave power devices , 1994 .

[10]  Paul-Alain Rolland,et al.  Transient analysis of collector current collapse in multifinger HBT's , 1998 .

[11]  Bongkoo Kang,et al.  Emitter structure of power heterojunction bipolar transistor for enhancement of thermal stability , 2001 .

[12]  W. Liu,et al.  The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors , 1996 .

[13]  Wen-Chau Liu,et al.  The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling , 1994 .

[14]  W. Liu,et al.  Near-ideal I-V characteristics of GaInP/GaAs heterojunction bipolar transistors , 1992, IEEE Electron Device Letters.

[15]  J.C.J. Paasschens,et al.  Dependence of thermal resistance on ambient and actual temperature , 2004, Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting.

[16]  Wei Wei,et al.  Self-heating and memory effects in RF power amplifiers explained through electro-thermal , 2013, 2013 NORCHIP.

[17]  Vincenzo d'Alessandro,et al.  Evaluation of thermal balancing techniques in InGaP/GaAs HBT power arrays for wireless handset power amplifiers , 2013, Microelectron. Reliab..

[18]  L. L. Liou,et al.  Thermal stability analysis of AlGaAs/GaAs heterojunction bipolar transistors with multiple emitter fingers , 1994 .

[19]  F. Ali,et al.  Flip-chip X-band operation of thermally-shunted microwave HBT's with sub-micron emitters , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[20]  T. Quach,et al.  Thermal management of microwave power heterojunction bipolar transistors , 1997 .

[21]  K. Sakuno,et al.  Bump heat sink technology - A novel assembly technology suitable for power HBTs , 1993, 15th Annual GaAs IC Symposium.

[22]  A. Gupta,et al.  CW measurement of HBT thermal resistance , 1992 .

[23]  Paul-Alain Rolland,et al.  3D Finite-difference electrothermal model for multifinger HBTs with thermal shunt and emitter ballast resistance , 1998 .

[24]  B. Yeats,et al.  Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods [GaAs devices] , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[25]  V. d'Alessandro,et al.  Influence of layout and technology parameters on the thermal behavior of InGaP/GaAs HBTs , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[26]  Sang-Woong Yoon Static and Dynamic Error Vector Magnitude Behavior of 2.4-GHz Power Amplifier , 2007, IEEE Transactions on Microwave Theory and Techniques.

[27]  D. J. Walkey,et al.  Linear models for temperature and power dependence of thermal resistance in Si, InP and GaAs substrate devices , 2001, Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.01CH37189).

[28]  L. L. Liou,et al.  Thermal analysis and characterization of thermally shunted AlGaAs/GaAs heterojunction bipolar transistors , 1995, Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[29]  M. Fresina,et al.  Trends in GaAs HBTs for wireless and RF , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[30]  N. Pan,et al.  Migration from an AlGaAs to an InGaP emitter HBT IC process for improved reliability , 1998, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260).

[31]  Taeseok Kim,et al.  Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs , 2010 .

[32]  J. A. Higgins Thermal properties of power HBT's , 1993 .

[33]  M. K. Jackson,et al.  Weak scaling of thermal resistance in AlGaAs-GaAs heterojunction bipolar transistors , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[34]  P. Ikalainen,et al.  Novel HBT with reduced thermal impedance , 1995 .

[35]  B. Vijayakumar,et al.  Device and package level thermal modeling of GaAs Power Amplifiers , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[36]  Alessandro Magnani,et al.  Fast novel thermal analysis simulation tool for integrated circuits (FANTASTIC) , 2014, 20th International Workshop on Thermal Investigations of ICs and Systems.

[37]  Mau-Chung Frank Chang,et al.  Thermal design and simulation of bipolar integrated circuits , 1992 .

[38]  S. Martellucci,et al.  Photoacoustic optical and thermal characterization of Si and GaAs ion implanted layers , 1987 .

[39]  S. Nelson,et al.  Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities , 1993 .

[40]  H. Morkoç,et al.  Thermal design studies of high-power heterojunction bipolar transistors , 1989 .

[41]  R. Scherer,et al.  Design and fabrication of thermally-stable AlGaAs/GaAs microwave power HBTs , 1993, Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[42]  Roger Sauter,et al.  Introduction to Engineering Statistics and Six Sigma , 2007, Technometrics.

[43]  R. Anholt,et al.  HBT thermal element design using an electro/thermal simulator , 1998 .

[44]  Taisuke Iwai,et al.  High-reliability InGaP/GaAs HBTs fabricated by self-aligned process , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[45]  P. M. Asbeck,et al.  Experimental I-V characteristics of AlGaAs/GaAs and GaInP/GaAs (D)HBTs with thin bases , 2000 .

[46]  Eberhard F. Krimmel,et al.  Silicon nitride : electronic structure; electrical magnetic, and optical properties; spectra; analysis , 1997 .