On the Residues of Binomial Coefficients and Their Products Modulo Prime Powers
暂无分享,去创建一个
AbstractIn this paper, we show several arithmetic properties on the residues of binomial coefficients and their products modulo prime powers, e.g.,$$
{\left( {\begin{array}{*{20}c}
{{pq - 1}} \\
{{{{\left( {pq - 1} \right)}} \mathord{\left/
{\vphantom {{{\left( {pq - 1} \right)}} 2}} \right.
\kern-\nulldelimiterspace} 2}} \\
\end{array} } \right)} \equiv {\left( {\begin{array}{*{20}c}
{{p - 1}} \\
{{{{\left( {p - 1} \right)}} \mathord{\left/
{\vphantom {{{\left( {p - 1} \right)}} 2}} \right.
\kern-\nulldelimiterspace} 2}} \\
\end{array} } \right)}{\left( {\begin{array}{*{20}c}
{{q - 1}} \\
{{{{\left( {q - 1} \right)}} \mathord{\left/
{\vphantom {{{\left( {q - 1} \right)}} 2}} \right.
\kern-\nulldelimiterspace} 2}} \\
\end{array} } \right)}{\left( {\bmod pq} \right)},
$$for any distinct odd primes p and q. Meanwhile, we discuss the connections with the prime recognitions.
[1] F. Morley,et al. Note on the Congruence 2 4n ≡(-) n (2n)!/(n!) 2 , Where 2n + 1 is a Prime , 1894 .
[2] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[3] D. Wiens,et al. DIOPHANTINE REPRESENTATION OF THE SET OF PRIME NUMBERS , 1976 .