A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries

The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Although there are many obstacles to overcome before the Na-ion battery becomes commercially available, recent research discoveries corroborate that some of the cathode materials for the Na-ion battery have indeed indisputable advantages over its Li-ion counterparts. In this publication, a comprehensive review of layered oxides (NaTMO2, TM = Ti, V, Cr, Mn, Fe, Co, Ni, and a mixture of 2 or 3 elements) as a viable Na-ion battery cathode is presented. Single TM systems are well characterized not only for their electrochemical performance but also for their structural transitions during the cycle. Binary TM systems are investigated in order to address issues regarding low reversible capacity, capacity retention, operating voltage, and structural stability. As a consequence, some materials already have reached an energy density of 520 mW h g−1, which is comparable to that of LiFePO4. Furthermore, some ternary TM systems retained more than 72% of their capacity along with over 99.7% Coulombic efficiency for 275 cycles. The goal of this review is to present the development of Na layered oxide materials in the past as well as the state of the art today in order to emphasize the compatibility and durability of layered oxides as powerful candidates for Na-ion battery cathode materials.

[1]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[2]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[3]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[4]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[5]  Haoshen Zhou,et al.  Designing high-capacity cathode materials for sodium-ion batteries , 2013 .

[6]  S. Kikkawa,et al.  Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM′O2 (M′ Cr, Fe, Co, Ni) , 1983 .

[7]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[8]  M. Doeff,et al.  Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure , 2002 .

[9]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .

[10]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[11]  M. Armand,et al.  An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2 , 2013 .

[12]  Jing Xu,et al.  Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges , 2013 .

[13]  Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery , 2011 .

[14]  S. Dou,et al.  Layered P2‐Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodium‐Ion Batteries , 2014 .

[15]  A. Rai,et al.  Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries , 2014 .

[16]  J. Dahn,et al.  Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange , 1999 .

[17]  E. Morán,et al.  α-NaFeO2: ionic conductivity and sodium extraction , 1999 .

[18]  Yang Liu,et al.  High Performance Na-Ion Batteries Based on Novel O3 Layered Oxide Cathode Materials , 2014 .

[19]  M. Srinivasan,et al.  Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries , 2013, Journal of Solid State Electrochemistry.

[20]  Shinichi Komaba,et al.  Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries , 2014, Science and technology of advanced materials.

[21]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[22]  C. Delmas,et al.  Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3) , 2012 .

[23]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[24]  M. Inagaki,et al.  A preparation and polymorphic relations of sodium iron oxide (NaFeO2) , 1980 .

[25]  Chun-hua Chen,et al.  Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries , 2014 .

[26]  Jay F. Whitacre,et al.  Relating Synthesis Conditions and Electrochemical Performance for the Sodium Intercalation Compound Na4Mn9O18 in Aqueous Electrolyte , 2010 .

[27]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[28]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[29]  Y. S. Lee,et al.  A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling , 2003 .

[30]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[31]  R. Kataoka,et al.  Development of High Capacity Cathode Material for Sodium Ion Batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2 , 2013 .

[32]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[33]  J. Molenda,et al.  Electronic and electrochemical properties of nickel bronze, NaxNiO2 , 1990 .

[34]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[35]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[36]  K. Kubota,et al.  A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity , 2014 .

[37]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[38]  P. Hagenmuller,et al.  Influence de l'environnement de l'ion alcalin sur sa mobilite dans les structures a feuillets Ax(LxM1−x)O2 , 1979 .

[39]  Huijun Li,et al.  Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries , 2013 .

[40]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[41]  T. Rojo,et al.  Electrochemical performance of NaFex(Ni0.5Ti0.5)1−xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery , 2015 .

[42]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[43]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[44]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[45]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[46]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[47]  Jaephil Cho,et al.  Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating , 2001 .

[48]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[49]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[50]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[51]  J. Gopalakrishnan Insertion/extraction of lithium and sodium in transition metal oxides and chalcogenides , 1985 .

[52]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[53]  Qian Sun,et al.  Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries , 2012 .

[54]  M. Doeff,et al.  Electrode Materials with the Na0.44MnO2 Structure: Effect ofTitanium Substitution on Physical and Electrochemical Properties , 2008 .

[55]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[56]  H. Ahn,et al.  Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. , 2013, Chemistry.

[57]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[58]  Martin Winter,et al.  Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material , 2013 .

[59]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[60]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[61]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[62]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[63]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[64]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[65]  Nikolay Dimov,et al.  Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries , 2013 .

[66]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[67]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[68]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[69]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[70]  S. Kikkawa,et al.  Sodium deintercalation from α-NaFeO2 , 1985 .

[71]  Ying Shirley Meng,et al.  RECENT ADVANCES IN SODIUM INTERCALATION POSITIVE ELECTRODE MATERIALS FOR SODIUM ION BATTERIES , 2013 .

[72]  Marca M. Doeff,et al.  Rechargeable Na/Na[sub x]CoO[sub 2] and Na[sub 15]Pb[sub 4]/Na[sub x]CoO[sub 2] polymer electrolyte cells , 1993 .

[73]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[74]  Kazuhiko Matsumoto,et al.  Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA , 2013 .

[75]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[76]  Zhou Yuan,et al.  Synthesis and electrochemical performance of Na0.7Fe0.7Mn0.3O2 as a cathode material for Na-ion battery , 2014 .

[77]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[78]  C. Delmas,et al.  O'3-Na(x)VO2 system: a superstructure for Na(1/2)VO2. , 2012, Inorganic chemistry.

[79]  Takayuki Shirane Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction , 1995 .

[80]  T. Rojo,et al.  Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process , 2014 .

[81]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[82]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[83]  J. Molenda,et al.  Relation between ionic and electronic defects of Na0.7MnO2 bronze and its electrochemical properties , 1987 .

[84]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[85]  M. Winter,et al.  P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries , 2013 .

[86]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[87]  R. Ruffo,et al.  Layered Na(0.71)CoO(2): a powerful candidate for viable and high performance Na-batteries. , 2012, Physical chemistry chemical physics : PCCP.

[88]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[89]  M. Armand,et al.  Building better batteries , 2008, Nature.

[90]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[91]  Xin Li,et al.  Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. , 2014, Nature materials.

[92]  S. Franger,et al.  Insights into the electrochemical activity of nanosized α-LiFeO2 , 2008 .

[93]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[94]  Y. Meng,et al.  Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries , 2014 .