A tight Gaussian bound for weighted sums of Rademacher random variables
暂无分享,去创建一个
[1] Sergey G. Bobkov,et al. On Gaussian and Bernoulli covariance representations , 2001 .
[2] Iosif Pinelis,et al. An asymptotically Gaussian bound on the Rademacher tails , 2010, 1007.2137.
[3] V. Bentkus. On measure concentration for separately Lipschitz functions in product spaces , 2007 .
[4] I. S. Shiganov. Refinement of the upper bound of the constant in the central limit theorem , 1986 .
[5] Iosif Pinelis,et al. Toward the best constant factor for the Rademacher-Gaussian tail comparison , 2006 .
[6] I. Tyurin. New estimates of the convergence rate in the Lyapunov theorem , 2009, 0912.0726.
[7] M. Rudelson,et al. The smallest singular value of a random rectangular matrix , 2008, 0802.3956.
[8] P. V. Beek,et al. An application of Fourier methods to the problem of sharpening the Berry-Esseen inequality , 1972 .
[9] B. Efron. Student's t-Test under Symmetry Conditions , 1969 .
[10] I. Pinelis. Extremal Probabilistic Problems and Hotelling's $T^2$ Test Under a Symmetry Condition , 1994, math/0701806.
[11] V. M. Zolotarev,et al. A sharpening of the inequality of Berry-Esseen , 1967 .
[12] I. Shevtsova. An improvement of convergence rate estimates in the Lyapunov theorem , 2010 .