Disjunctive Inequalities: Applications And Extensions

We survey some applications and extensions of disjunctive programming with special emphasis on recent developments. Specifically, after recalling the basic ingredients of disjunctive inequalities we report on recent results in the context of mixed integer linear programming. We then consider the application of disjunctive constraints both as modeling tool and cutting planes in mixed integer nonlinear programming. Finally, we discuss the application of disjunctions as branching conditions in enumerative algorithms, as opposed to the cutting approach. Keywords: disjunctive inequalities; MILP; MINLP; generalized disjunctive programming; branching

[1]  Franz Rendl,et al.  Bounds for the quadratic assignment problem using the bundle method , 2007, Math. Program..

[2]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[3]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[4]  Sanjay Mehrotra,et al.  Experimental Results on Using General Disjunctions in Branch-and-Bound for General-Integer Linear Programs , 2001, Comput. Optim. Appl..

[5]  Josef Kallrath,et al.  Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization , 2005, Ann. Oper. Res..

[6]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[7]  Claudio Gentile,et al.  Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..

[8]  Egon Balas A modified lift-and-project procedure , 1997, Math. Program..

[9]  Egon Balas,et al.  Lift-and-project for Mixed 0-1 programming: recent progress , 2002, Discret. Appl. Math..

[10]  A. Mahajan,et al.  Experiments with Branching using General Disjunctions , 2009 .

[11]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[12]  Leo Liberti,et al.  Reformulation in mathematical programming: An application to quantum chemistry , 2009, Discret. Appl. Math..

[13]  Charles Audet,et al.  Disjunctive cuts for continuous linear bilevel programming , 2006, Optim. Lett..

[14]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[15]  Egon Balas,et al.  A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming , 2003, Math. Program..

[16]  Sinan Gürel,et al.  A strong conic quadratic reformulation for machine-job assignment with controllable processing times , 2009, Oper. Res. Lett..

[17]  Yushan Zhu,et al.  An improved branch‐and‐cut algorithm for mixed‐integer nonlinear systems optimization problem , 2008 .

[18]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[19]  Arjen K. Lenstra,et al.  Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 1999, INFORMS J. Comput..

[20]  Ted K. Ralphs,et al.  On the Complexity of Selecting Disjunctions in Integer Programming , 2010, SIAM J. Optim..

[21]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[22]  Ali Ridha Mahjoub Progress in combinatorial optimization , 2011 .

[23]  Gábor Pataki,et al.  Column basis reduction and decomposable knapsack problems , 2008, Discret. Optim..

[24]  Oktay Günlük,et al.  Perspective Relaxation of Mixed Integer Nonlinear Programs with Indicator Variables , 2008, IPCO.

[25]  Matteo Fischetti,et al.  On the separation of disjunctive cuts , 2011, Math. Program..

[26]  Gérard Cornuéjols,et al.  Branching on general disjunctions , 2011, Math. Program..

[27]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[28]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[29]  Sanjay Mehrotra On Generalized Branching Methods for Mixed Integer Programming , 2004 .

[30]  Jon Lee,et al.  Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations , 2010, Math. Program..

[31]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[32]  László Lovász,et al.  The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..

[33]  Mehmet Tolga Çezik,et al.  Cuts for mixed 0-1 conic programming , 2005, Math. Program..

[34]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[35]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[36]  C. Floudas Global optimization in design and control of chemical process systems , 1998 .

[37]  Gérard Cornuéjols,et al.  Improved strategies for branching on general disjunctions , 2011, Math. Program..

[38]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[39]  Jon Lee,et al.  Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs , 2008, IPCO.

[40]  Milind Dawande,et al.  A Class of Hard Small 0-1 Programs , 1998, INFORMS J. Comput..

[41]  Egon Balas,et al.  Generating lift-and-project cuts from the LP simplex tableau: open source implementation and testing of new variants , 2009, Math. Program. Comput..

[42]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[43]  Egon Balas,et al.  Optimizing over the split closure , 2008, Math. Program..

[44]  J. Ben Rosen,et al.  A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..

[45]  Martin Grötschel,et al.  Geometric Methods in Combinatorial Optimization , 1984 .

[46]  Ignacio E. Grossmann,et al.  Generalized Convex Disjunctive Programming: Nonlinear Convex Hull Relaxation , 2003, Comput. Optim. Appl..

[47]  S. Ulbrich,et al.  MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .

[48]  E. Balas,et al.  Strengthening cuts for mixed integer programs , 1980 .

[49]  Hanif D. Sherali,et al.  A Complementarity-based Partitioning and Disjunctive Cut Algorithm for Mathematical Programming Problems with Equilibrium Constraints , 2006, J. Glob. Optim..

[50]  Jon Lee,et al.  Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations , 2011, Math. Program..

[51]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[52]  R. Gomory AN ALGORITHM FOR THE MIXED INTEGER PROBLEM , 1960 .

[53]  P. Belotti Disjunctive Cuts for Nonconvex MINLP , 2012 .

[54]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[55]  Egon Balas Disjunctive Programming , 2010, 50 Years of Integer Programming.

[56]  Leo Liberti,et al.  A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem , 2008, Int. Trans. Oper. Res..

[57]  Arjen K. Lenstra,et al.  Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 2000, INFORMS J. Comput..

[58]  Kent Andersen,et al.  Reduce-and-Split Cuts: Improving the Performance of Mixed-Integer Gomory Cuts , 2005, Manag. Sci..

[59]  W. Pulleyblank Progress in combinatorial optimization , 1985 .

[60]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..