Disjunctive Inequalities: Applications And Extensions
暂无分享,去创建一个
Andrea Lodi | Leo Liberti | Pietro Belotti | Giacomo Nannicini | Andrea Tramontani | Leo Liberti | Andrea Tramontani | P. Belotti | G. Nannicini | Andrea Lodi
[1] Franz Rendl,et al. Bounds for the quadratic assignment problem using the bundle method , 2007, Math. Program..
[2] Nikolaos V. Sahinidis,et al. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .
[3] Thorsten Koch,et al. Branching rules revisited , 2005, Oper. Res. Lett..
[4] Sanjay Mehrotra,et al. Experimental Results on Using General Disjunctions in Branch-and-Bound for General-Integer Linear Programs , 2001, Comput. Optim. Appl..
[5] Josef Kallrath,et al. Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization , 2005, Ann. Oper. Res..
[6] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[7] Claudio Gentile,et al. Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..
[8] Egon Balas. A modified lift-and-project procedure , 1997, Math. Program..
[9] Egon Balas,et al. Lift-and-project for Mixed 0-1 programming: recent progress , 2002, Discret. Appl. Math..
[10] A. Mahajan,et al. Experiments with Branching using General Disjunctions , 2009 .
[11] William J. Cook,et al. Chvátal closures for mixed integer programming problems , 1990, Math. Program..
[12] Leo Liberti,et al. Reformulation in mathematical programming: An application to quantum chemistry , 2009, Discret. Appl. Math..
[13] Charles Audet,et al. Disjunctive cuts for continuous linear bilevel programming , 2006, Optim. Lett..
[14] E. Balas,et al. Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .
[15] Egon Balas,et al. A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming , 2003, Math. Program..
[16] Sinan Gürel,et al. A strong conic quadratic reformulation for machine-job assignment with controllable processing times , 2009, Oper. Res. Lett..
[17] Yushan Zhu,et al. An improved branch‐and‐cut algorithm for mixed‐integer nonlinear systems optimization problem , 2008 .
[18] Ignacio E. Grossmann,et al. Systematic Methods of Chemical Process Design , 1997 .
[19] Arjen K. Lenstra,et al. Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 1999, INFORMS J. Comput..
[20] Ted K. Ralphs,et al. On the Complexity of Selecting Disjunctions in Integer Programming , 2010, SIAM J. Optim..
[21] Egon Balas,et al. programming: Properties of the convex hull of feasible points * , 1998 .
[22] Ali Ridha Mahjoub. Progress in combinatorial optimization , 2011 .
[23] Gábor Pataki,et al. Column basis reduction and decomposable knapsack problems , 2008, Discret. Optim..
[24] Oktay Günlük,et al. Perspective Relaxation of Mixed Integer Nonlinear Programs with Indicator Variables , 2008, IPCO.
[25] Matteo Fischetti,et al. On the separation of disjunctive cuts , 2011, Math. Program..
[26] Gérard Cornuéjols,et al. Branching on general disjunctions , 2011, Math. Program..
[27] Sanjay Mehrotra,et al. A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..
[28] A. Land,et al. An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.
[29] Sanjay Mehrotra. On Generalized Branching Methods for Mixed Integer Programming , 2004 .
[30] Jon Lee,et al. Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations , 2010, Math. Program..
[31] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[32] László Lovász,et al. The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..
[33] Mehmet Tolga Çezik,et al. Cuts for mixed 0-1 conic programming , 2005, Math. Program..
[34] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[35] R. Raman,et al. Modelling and computational techniques for logic based integer programming , 1994 .
[36] C. Floudas. Global optimization in design and control of chemical process systems , 1998 .
[37] Gérard Cornuéjols,et al. Improved strategies for branching on general disjunctions , 2011, Math. Program..
[38] Edward M. B. Smith,et al. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .
[39] Jon Lee,et al. Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs , 2008, IPCO.
[40] Milind Dawande,et al. A Class of Hard Small 0-1 Programs , 1998, INFORMS J. Comput..
[41] Egon Balas,et al. Generating lift-and-project cuts from the LP simplex tableau: open source implementation and testing of new variants , 2009, Math. Program. Comput..
[42] C. Helmberg,et al. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .
[43] Egon Balas,et al. Optimizing over the split closure , 2008, Math. Program..
[44] J. Ben Rosen,et al. A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..
[45] Martin Grötschel,et al. Geometric Methods in Combinatorial Optimization , 1984 .
[46] Ignacio E. Grossmann,et al. Generalized Convex Disjunctive Programming: Nonlinear Convex Hull Relaxation , 2003, Comput. Optim. Appl..
[47] S. Ulbrich,et al. MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .
[48] E. Balas,et al. Strengthening cuts for mixed integer programs , 1980 .
[49] Hanif D. Sherali,et al. A Complementarity-based Partitioning and Disjunctive Cut Algorithm for Mathematical Programming Problems with Equilibrium Constraints , 2006, J. Glob. Optim..
[50] Jon Lee,et al. Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations , 2011, Math. Program..
[51] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[52] R. Gomory. AN ALGORITHM FOR THE MIXED INTEGER PROBLEM , 1960 .
[53] P. Belotti. Disjunctive Cuts for Nonconvex MINLP , 2012 .
[54] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[55] Egon Balas. Disjunctive Programming , 2010, 50 Years of Integer Programming.
[56] Leo Liberti,et al. A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem , 2008, Int. Trans. Oper. Res..
[57] Arjen K. Lenstra,et al. Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 2000, INFORMS J. Comput..
[58] Kent Andersen,et al. Reduce-and-Split Cuts: Improving the Performance of Mixed-Integer Gomory Cuts , 2005, Manag. Sci..
[59] W. Pulleyblank. Progress in combinatorial optimization , 1985 .
[60] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..