Physiology of Microglia.

[1]  H. Kiyama,et al.  Dual functions of microglia in the formation and refinement of neural circuits during development , 2018, International Journal of Developmental Neuroscience.

[2]  O. Garaschuk,et al.  A new approach for ratiometric in vivo calcium imaging of microglia , 2017, Scientific Reports.

[3]  O. Garaschuk,et al.  Monitoring in vivo function of cortical microglia. , 2017, Cell calcium.

[4]  E. Audinat,et al.  Microglia in CNS development: Shaping the brain for the future , 2017, Progress in Neurobiology.

[5]  P. Lledo,et al.  Sensory deprivation increases phagocytosis of adult-born neurons by activated microglia in the olfactory bulb , 2017, Brain, Behavior, and Immunity.

[6]  V. Matyash,et al.  Spontaneous Ca2+ transients in mouse microglia. , 2016, Cell calcium.

[7]  Paul J. Lucassen,et al.  The Indispensable Roles of Microglia and Astrocytes during Brain Development , 2016, Front. Hum. Neurosci..

[8]  H. Kettenmann,et al.  The “Big‐Bang” for modern glial biology: Translation and comments on Pío del Río‐Hortega 1919 series of papers on microglia , 2016, Glia.

[9]  Y. Yoshimura,et al.  Microglia contact induces synapse formation in developing somatosensory cortex , 2016, Nature Communications.

[10]  D. Schafer,et al.  Microglia: Architects of the Developing Nervous System. , 2016, Trends in cell biology.

[11]  Dmitri A. Rusakov,et al.  Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca2+ in Neurons and Astroglia , 2015, Neuron.

[12]  B. MacVicar,et al.  Microglia: Dynamic Mediators of Synapse Development and Plasticity. , 2015, Trends in immunology.

[13]  M. Capecchi,et al.  Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse , 2015, Front. Mol. Neurosci..

[14]  Maiken Nedergaard,et al.  Astroglial cradle in the life of the synapse , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  B. Trapp,et al.  Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain , 2014, Nature Communications.

[16]  A. Verkhratsky,et al.  Store-operated calcium entry in neuroglia , 2014, Neuroscience Bulletin.

[17]  O. Garaschuk,et al.  Impairment of in vivo calcium signaling in amyloid plaque-associated microglia , 2014, Acta Neuropathologica.

[18]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[19]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[20]  G. Collingridge,et al.  Activation of microglial N‐methyl‐D‐aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain , 2012, Annals of neurology.

[21]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[22]  G. Burnstock,et al.  Pathophysiology of astroglial purinergic signalling , 2012, Purinergic Signalling.

[23]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[24]  O. Pascual,et al.  Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission , 2011, Proceedings of the National Academy of Sciences.

[25]  A. Nimmerjahn,et al.  The Role of Microglia in the Healthy Brain , 2011, The Journal of Neuroscience.

[26]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[27]  H. Kettenmann,et al.  Transmitter- and hormone-activated Ca(2+) responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca(2+) sensor. , 2011, Cell calcium.

[28]  O. Garaschuk,et al.  Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. , 2011, Biochimica et biophysica acta.

[29]  H. Kettenmann,et al.  Physiology of microglia. , 2011, Physiological reviews.

[30]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[31]  Ania K. Majewska,et al.  Microglial Interactions with Synapses Are Modulated by Visual Experience , 2010, PLoS biology.

[32]  G. Enikolopov,et al.  Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. , 2010, Cell stem cell.

[33]  Petr Tvrdik,et al.  Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice , 2010, Cell.

[34]  V. Kaushal,et al.  The Ca2+ activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro , 2010, Journal of Neuroinflammation.

[35]  S. Waxman,et al.  Sodium channel activity modulates multiple functions in microglia , 2009, Glia.

[36]  F. Di Virgilio,et al.  Activation of Microglia by Amyloid β Requires P2X7 Receptor Expression1 , 2009, The Journal of Immunology.

[37]  J. Nabekura,et al.  Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals , 2009, The Journal of Neuroscience.

[38]  C. Reid,et al.  The P2X7 Receptor Drives Microglial Activation and Proliferation: A Trophic Role for P2X7R Pore , 2009, The Journal of Neuroscience.

[39]  E. F. Stanley,et al.  The Ca2+ release-activated Ca2+ current (ICRAC) mediates store-operated Ca2+ entry in rat microglia , 2009, Channels.

[40]  G. Burnstock,et al.  Purinoceptors on Neuroglia , 2009, Molecular Neurobiology.

[41]  Geoffrey Burnstock,et al.  Purinergic signalling in the nervous system: an overview , 2009, Trends in Neurosciences.

[42]  Ruslan Medzhitov,et al.  Pattern recognition receptors and control of adaptive immunity , 2009, Immunological reviews.

[43]  M. Duchen,et al.  CLIC1 Function Is Required for β-Amyloid-Induced Generation of Reactive Oxygen Species by Microglia , 2008, The Journal of Neuroscience.

[44]  E. Audinat,et al.  Status Epilepticus Induces a Particular Microglial Activation State Characterized by Enhanced Purinergic Signaling , 2008, The Journal of Neuroscience.

[45]  K. Biber,et al.  Neuron-microglia signaling: Chemokines as versatile messengers , 2008, Journal of Neuroimmunology.

[46]  N. Amariglio,et al.  Dual Role of CD38 in Microglial Activation and Activation-Induced Cell Death1 , 2008, The Journal of Immunology.

[47]  T. Kielian,et al.  Microglia and Astrocyte Activation by Toll-Like Receptor Ligands: Modulation by PPAR-γ Agonists , 2008, PPAR research.

[48]  Michael P. Stryker,et al.  Report Tumor Necrosis Factor-a Mediates One Component of Competitive, Experience-dependent Plasticity in Developing Visual Cortex , 2022 .

[49]  B. Lemaître,et al.  Toll-like receptors — taking an evolutionary approach , 2008, Nature Reviews Genetics.

[50]  S. Miller,et al.  Glial toll-like receptor signaling in central nervous system infection and autoimmunity , 2008, Brain, Behavior, and Immunity.

[51]  R. Penner,et al.  Lipopolysaccharide‐induced down‐regulation of Ca2+ release‐activated Ca2+ currents (ICRAC) but not Ca2+‐activated TRPM4‐like currents (ICAN) in cultured mouse microglial cells , 2008, The Journal of physiology.

[52]  C. Eder,et al.  Ion channel expression in resting and activated microglia of hippocampal slices from juvenile mice , 2007, Brain Research.

[53]  H. Neumann,et al.  Neuronal ‘On’ and ‘Off’ signals control microglia , 2007, Trends in Neurosciences.

[54]  E. Newell,et al.  Small‐conductance Cl– channels contribute to volume regulation and phagocytosis in microglia , 2007, The European journal of neuroscience.

[55]  H. Kettenmann,et al.  Neurotransmitter receptors on microglia , 2007, Trends in Neurosciences.

[56]  Hyun B Choi,et al.  Functional ryanodine receptors are expressed by human microglia and THP‐1 cells: Their possible involvement in modulation of neurotoxicity , 2007, Journal of neuroscience research.

[57]  K. Jacobson,et al.  UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis , 2007, Nature.

[58]  Rajagopal N. Aravalli,et al.  Toll-like Receptors in Defense and Damage of the Central Nervous System , 2007, Journal of Neuroimmune Pharmacology.

[59]  Yuriy Pankratov,et al.  Quantal Release of ATP in Mouse Cortex , 2007, The Journal of general physiology.

[60]  R. Nau,et al.  Microglial cells and peritoneal macrophages release activin A upon stimulation with Toll-like receptor agonists , 2007, Neuroscience Letters.

[61]  V. Kaushal,et al.  The Ca2+-Activated K+ Channel KCNN4/KCa3.1 Contributes to Microglia Activation and Nitric Oxide-Dependent Neurodegeneration , 2007, The Journal of Neuroscience.

[62]  D. Philpott,et al.  Nod-like proteins in immunity, inflammation and disease , 2006, Nature Immunology.

[63]  P. Sansonetti The innate signaling of dangers and the dangers of innate signaling , 2006, Nature Immunology.

[64]  H. Nakanishi,et al.  Cell cycle-dependent regulation of kainate-induced inward currents in microglia. , 2006, Biochemical and biophysical research communications.

[65]  C. Usai,et al.  Cyclic ADP‐ribose is a second messenger in the lipopolysaccharide‐stimulated activation of murine N9 microglial cell line , 2006, Journal of neurochemistry.

[66]  P. Peterson,et al.  CCL5 evokes calcium signals in microglia through a kinase‐, phosphoinositide‐, and nucleotide‐dependent mechanism , 2006, Journal of neuroscience research.

[67]  V. Tawfik,et al.  The tetrapartite synapse: Path to CNS sensitization and chronic pain , 2006, PAIN.

[68]  B. Sperlágh,et al.  P2X7 receptors in the nervous system , 2006, Progress in Neurobiology.

[69]  C. Gravel,et al.  BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain , 2005, Nature.

[70]  R. Jagasia,et al.  Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons , 2005, The Journal of Neuroscience.

[71]  G. Hansson,et al.  Toll to be paid at the gateway to the vessel wall. , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[72]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[73]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[74]  A. Lo,et al.  Sodium channels contribute to microglia/macrophage activation and function in EAE and MS , 2005, Glia.

[75]  S. Miller,et al.  Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs1 , 2004, The Journal of Immunology.

[76]  Shizuo Akira,et al.  Toll-like receptor signalling , 2004, Nature Reviews Immunology.

[77]  H. Kettenmann,et al.  Microglia express GABAB receptors to modulate interleukin release , 2004, Molecular and Cellular Neuroscience.

[78]  S. Koizumi,et al.  P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury , 2003, Nature.

[79]  C. Boucsein,et al.  Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro , 2003, The European journal of neuroscience.

[80]  R. Ravid,et al.  Broad Expression of Toll‐Like Receptors in the Human Central Nervous System , 2002, Journal of neuropathology and experimental neurology.

[81]  M. Cuzner,et al.  Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up‐regulated in Alzheimer's disease , 2002, Journal of neurochemistry.

[82]  Deanna L. Taylor,et al.  Activation of Microglial Group III Metabotropic Glutamate Receptors Protects Neurons against Microglial Neurotoxicity , 2002, The Journal of Neuroscience.

[83]  T. DeCoursey,et al.  Voltage-gated proton channels in microglia , 2001, Progress in Neurobiology.

[84]  X. Zhu,et al.  K+ channels and the microglial respiratory burst. , 2001, American journal of physiology. Cell physiology.

[85]  H. Kettenmann,et al.  Distinct Physiologic Properties of Microglia and Blood-Borne Cells in Rat Brain Slices After Permanent Middle Cerebral Artery Occlusion , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[86]  F. N. Quandt,et al.  Upregulation of Kv1.3 K(+) channels in microglia deactivated by TGF-beta. , 2000, American journal of physiology. Cell physiology.

[87]  C. Boucsein,et al.  Electrophysiological properties of microglial cells in normal and pathologic rat brain slices , 2000, The European journal of neuroscience.

[88]  H. Nakanishi,et al.  AMPA–Kainate Subtypes of Glutamate Receptor in Rat Cerebral Microglia , 2000, The Journal of Neuroscience.

[89]  T. Möller,et al.  Long-term activation of capacitative Ca2+ entry in mouse microglial cells , 1998, Neuroscience.

[90]  F. Kirchhoff,et al.  Endothelin‐induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors , 1997, Neuroreport.

[91]  T. Möller,et al.  Mechanisms of C5a and C3a Complement Fragment-Induced [Ca2+]i Signaling in Mouse Microglia , 1997, The Journal of Neuroscience.

[92]  H. Kettenmann,et al.  ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices , 1996, Neuroscience.

[93]  P. Gebicke-haerter,et al.  Sodium channel in isolated human brain macrophages (microglia) , 1994, Glia.

[94]  P. Gebicke-haerter,et al.  Characterization and possible function of adenosine 5′‐triphosphate receptors in activated rat microglia , 1994, British journal of pharmacology.

[95]  S. Ilschner,et al.  Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  P. Gebicke-haerter,et al.  Inflammatory stimuli induce a new K+ outward current in cultured rat microglia , 1992, Neuroscience Letters.

[97]  M. Nedergaard,et al.  Physiology of Astroglia. , 2018, Physiological reviews.

[98]  A. Verkhratsky,et al.  Glial calcium: homeostasis and signaling function. , 1998, Physiological reviews.

[99]  C. Cotman,et al.  Voltage‐gated currents expressed by rat microglia in culture , 1992, Glia.