Analog Optical Computing for Artificial Intelligence

[1]  L. Larger,et al.  Optoelectronic reservoir computing: tackling noise-induced performance degradation. , 2013, Optics express.

[2]  Serge Massar,et al.  Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems , 2017 .

[3]  Marc Haelterman,et al.  Virtualization of a Photonic Reservoir Computer , 2016, Journal of Lightwave Technology.

[4]  Satinder Singh,et al.  Artificial intelligence: Learning to play Go from scratch , 2017, Nature.

[5]  Cewu Lu,et al.  Towards a new generation of artificial intelligence in China , 2020, Nature Machine Intelligence.

[6]  Shuming Jiao,et al.  Multiple-image encryption and hiding with an optical diffractive neural network , 2019, Optics Communications.

[7]  K. Unterrainer,et al.  Terahertz optical machine learning for object recognition , 2020 .

[8]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[9]  Xingyuan Xu,et al.  Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks , 2020, 2020 International Topical Meeting on Microwave Photonics (MWP).

[10]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[11]  Tarek El-Ghazawi,et al.  Neuromorphic photonics with electro-absorption modulators. , 2018, Optics express.

[12]  Lei Ying,et al.  Nanophotonic media for artificial neural inference , 2018, Photonics Research.

[13]  B. Schrauwen,et al.  Cascadable excitability in microrings. , 2012, Optics express.

[14]  Boyuan Liu,et al.  Neuromorphic metasurface , 2019, Photonics Research.

[15]  Sander M. Bohte,et al.  Error-backpropagation in temporally encoded networks of spiking neurons , 2000, Neurocomputing.

[16]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[17]  Gang Zhang,et al.  Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site , 2012, Scientific Reports.

[18]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[19]  Atsushi Uchida,et al.  Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. , 2016, Optics express.

[20]  Ali Khiat,et al.  Challenges hindering memristive neuromorphic hardware from going mainstream , 2018, Nature Communications.

[21]  Yi Luo,et al.  Design of task-specific optical systems using broadband diffractive neural networks , 2019, Light, science & applications.

[22]  Romain Modeste Nguimdo,et al.  Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. , 2014, Optics express.

[23]  Jian Xu,et al.  Performing optical logic operations by a diffractive neural network , 2020, Light: Science & Applications.

[24]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[25]  A. Schenk,et al.  High-speed III-V nanowire photodetector monolithically integrated on Si , 2020, Nature Communications.

[26]  Mingguo Zhao,et al.  Towards artificial general intelligence with hybrid Tianjic chip architecture , 2019, Nature.

[27]  Bhavin J. Shastri,et al.  Neuromorphic Photonic Integrated Circuits , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Laurent Larger,et al.  High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification , 2017 .

[29]  Philippe M. Bardet,et al.  Massively parallel amplitude-only Fourier neural network , 2020, Optica.

[30]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[31]  Federico Capasso,et al.  Arbitrary spin-to–orbital angular momentum conversion of light , 2017, Science.

[32]  Yue Jiang,et al.  All-optical neural network with nonlinear activation functions , 2019, Optica.

[33]  G. Lo,et al.  An optical neural chip for implementing complex-valued neural network , 2021, Nature Communications.

[34]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[35]  Forrest N. Iandola,et al.  SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[36]  Mohammad Reza Salehi,et al.  Optical signal processing using photonic reservoir computing , 2014 .

[37]  Meng-Fan Chang,et al.  Neuro-inspired computing chips , 2020, Nature Electronics.

[38]  Yi Luo,et al.  Analysis of Diffractive Optical Neural Networks and Their Integration With Electronic Neural Networks , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Takeshi Iwata,et al.  Corrigendum: Mitochondrial pathogenic mechanism and degradation in optineurin E50K mutation-mediated retinal ganglion cell degeneration , 2017, Scientific Reports.

[40]  Gang-Ding Peng,et al.  Fiber Optofluidic Microlaser With Lateral Single Mode Emission , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  Muhammed Veli,et al.  Terahertz pulse shaping using diffractive surfaces , 2020, Nature communications.

[42]  Benjamin Schrauwen,et al.  Toward optical signal processing using photonic reservoir computing. , 2008, Optics express.

[43]  Benjamin Schrauwen,et al.  Parallel Reservoir Computing Using Optical Amplifiers , 2011, IEEE Transactions on Neural Networks.

[44]  Fang Liu,et al.  Integrated photonic reservoir computing based on hierarchical time-multiplexing structure , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[45]  Pedram Pad,et al.  Efficient Neural Vision Systems Based on Convolutional Image Acquisition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Serge Massar,et al.  Fully analogue photonic reservoir computer , 2016, Scientific Reports.

[47]  Volker J. Sorger,et al.  Integrated Photonic FFT for Optical Convolutions towards Efficient and High-Speed Neural Networks , 2020, ArXiv.

[48]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[49]  Yi Luo,et al.  Class-specific differential detection in diffractive optical neural networks improves inference accuracy , 2019, Advanced Photonics.

[50]  Shlomi Dolev,et al.  High-speed and low-power electro-optical DSP coprocessor. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  Thomas Ferreira de Lima,et al.  Multi-channel control for microring weight banks. , 2016, Optics express.

[52]  Antonio Hurtado,et al.  Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems , 2012 .

[53]  Shuiying Xiang,et al.  STDP-Based Unsupervised Spike Pattern Learning in a Photonic Spiking Neural Network With VCSELs and VCSOAs , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[55]  Stefan Schliebs,et al.  Span: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns , 2012, Int. J. Neural Syst..

[56]  Mingguo Zhao,et al.  A system hierarchy for brain-inspired computing , 2020, Nature.

[57]  Kevin Marsh,et al.  Erratum: Corrigendum: The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody , 2013 .

[58]  Yue Hao,et al.  Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[59]  H. Sompolinsky,et al.  The tempotron: a neuron that learns spike timing–based decisions , 2006, Nature Neuroscience.

[60]  A. Ozcan,et al.  Scale-, shift- and rotation-invariant diffractive optical networks , 2020, ACS Photonics.

[61]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[62]  Mitra S. Ganewatta,et al.  Macromolecular-clustered facial amphiphilic antimicrobials , 2018, Nature Communications.

[63]  Dan Wang,et al.  Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. , 2018, Optics express.

[64]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[65]  Huajin Tang,et al.  Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns , 2013, PloS one.

[66]  Serge Massar,et al.  All-optical Reservoir Computing , 2012, Optics express.

[67]  Andrzej J. Kasinski,et al.  Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting , 2010, Neural Computation.

[68]  R. Agarwal,et al.  Photocurrent detection of the orbital angular momentum of light , 2020, Science.

[69]  Peter Modregger,et al.  Erratum: Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord (Scientific Reports (2015) 5: (8514) 10.1038/srep08514) , 2015 .

[70]  Eli Shlizerman,et al.  An Optical Frontend for a Convolutional Neural Network , 2018, Applied optics.

[71]  Armin Mehrabian,et al.  PCNNA: A Photonic Convolutional Neural Network Accelerator , 2018, 2018 31st IEEE International System-on-Chip Conference (SOCC).

[72]  Geoffrey W. Burr A role for optics in AI hardware , 2019, Nature.

[73]  Bhavin J. Shastri,et al.  Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits , 2020 .

[74]  K. Ikeda,et al.  Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity , 1980 .

[75]  Gordon Wetzstein,et al.  Inference in artificial intelligence with deep optics and photonics , 2020, Nature.

[76]  Weiwen Zou,et al.  Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. , 2020, Optics letters.

[77]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[78]  Bahram Jalali,et al.  Analog optical computing , 2015, Nature Photonics.

[79]  赵清春 Zhao Qingchun,et al.  Research Progress of Reservoir Computing Using Chaotic Laser , 2013 .

[80]  V. Aref,et al.  Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit , 2017, Nature Photonics.

[81]  George T. Kanellos,et al.  Optics in Computing: From Photonic Network-on-Chip to Chip-to-Chip Interconnects and Disintegrated Architectures , 2019, Journal of Lightwave Technology.

[82]  Zeev Zalevsky,et al.  Neural networks within multi-core optic fibers , 2016, Scientific Reports.

[83]  S. Sivasubramanian,et al.  Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in bresat cancer cells: an improved nanomedicine strategies , 2016, Scientific Reports.

[84]  Yingbai Yan,et al.  Image feature extraction with the optical Haar wavelet transform , 1995 .

[85]  Kwabena Boahen,et al.  A Neuromorph's Prospectus , 2017, Computing in Science & Engineering.

[86]  L. Larger,et al.  Nonlocal Nonlinear Electro-Optic Phase Dynamics Demonstrating 10 Gb/s Chaos Communications , 2010, IEEE Journal of Quantum Electronics.

[87]  Shelie A. Miller,et al.  Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit , 2021, Nature Communications.

[88]  Laurent Larger,et al.  Chaos in wavelength with a feedback tunable laser diode , 1998 .

[89]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[90]  Ingo Fischer,et al.  Reconfigurable semiconductor laser networks based on diffractive coupling. , 2015, Optics letters.

[91]  Xu Han,et al.  Efficient training and design of photonic neural network through neuroevolution , 2019, Optics express.

[92]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[93]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[94]  Tao Yan,et al.  In situ optical backpropagation training of diffractive optical neural networks , 2020 .

[95]  Paul R. Prucnal,et al.  Spike processing with a graphene excitable laser , 2016, Scientific Reports.

[96]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[97]  Christine Silberhorn,et al.  Metasurface interferometry toward quantum sensors , 2019, Light, science & applications.

[98]  Masaya Notomi,et al.  Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions , 2019, Nature Photonics.

[99]  Dirk Englund,et al.  Programmable photonic circuits , 2020, Nature.

[100]  Michiel Hermans,et al.  Online Training of an Opto-Electronic Reservoir Computer Applied to Real-Time Channel Equalization , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[101]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[102]  M S Mills,et al.  Multi-directional beam steering using diffractive neural networks. , 2020, Optics express.

[103]  Shuqing Chen,et al.  All-Optical Signal Processing of Vortex Beams with Diffractive Deep Neural Networks , 2021 .

[104]  J. Danckaert,et al.  Solitary and coupled semiconductor ring lasers as optical spiking neurons. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  Hamed Dalir,et al.  Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks , 2020, Nanophotonics.

[106]  Jonathan Dong,et al.  Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[107]  Romain Modeste Nguimdo,et al.  Reducing the phase sensitivity of laser-based optical reservoir computing systems. , 2016, Optics express.

[108]  Philip Y. Ma,et al.  Photonic principal component analysis using an on-chip microring weight bank. , 2019, Optics express.

[109]  Sasikanth Manipatruni,et al.  Design of optical neural networks with component imprecisions , 2019, Optics express.

[110]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[111]  Yang Gao,et al.  Optical machine learning with incoherent light and a single-pixel detector , 2019, Optics letters.

[112]  Tao Yan,et al.  Residual D2NN: training diffractive deep neural networks via learnable light shortcuts. , 2020, Optics letters.

[113]  Jonathan Dong,et al.  Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction , 2020, Physical Review X.

[114]  Yang He,et al.  Lithium niobate photonic-crystal electro-optic modulator , 2020, Nature Communications.

[115]  C. Wright,et al.  Photonics for artificial intelligence and neuromorphic computing , 2020, ArXiv.

[116]  H. John Caulfield,et al.  Why future supercomputing requires optics , 2010 .

[117]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[118]  M. C. Soriano,et al.  Information Processing Using Transient Dynamics of Semiconductor Lasers Subject to Delayed Feedback , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[119]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[120]  Laurent Larger,et al.  Three dimensional waveguide-interconnects for scalable integration of photonic neural networks , 2019, Optica.

[121]  Serge Massar,et al.  High performance photonic reservoir computer based on a coherently driven passive cavity , 2015, ArXiv.

[122]  L. Kuipers,et al.  Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths , 2020, Light: Science & Applications.

[123]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[124]  J. Rho,et al.  Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena , 2020, Light: Science & Applications.

[125]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[126]  Yong Wang,et al.  Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning , 2020 .

[127]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[128]  M. C. Soriano,et al.  A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron , 2015, Scientific Reports.

[129]  R Kuszelewicz,et al.  Relative refractory period in an excitable semiconductor laser. , 2014, Physical review letters.

[130]  Philip Y. Ma,et al.  Feedback control for microring weight banks. , 2018, Optics express.

[131]  Sylvain Barbay,et al.  Excitability in a semiconductor laser with saturable absorber. , 2011, Optics letters.

[132]  Thomas Ferreira de Lima,et al.  Excitable laser processing network node in hybrid silicon: analysis and simulation. , 2015, Optics express.

[133]  Zeev Zalevsky,et al.  Color image identification and reconstruction using artificial neural networks on multimode fiber images: towards an all-optical design. , 2018, Optics letters.

[134]  Laurent Larger,et al.  Photonic nonlinear transient computing with multiple-delay wavelength dynamics. , 2012, Physical review letters.

[135]  Marco Cococcioni,et al.  Photonic Neural Networks: A Survey , 2019, IEEE Access.

[136]  Daniel Brunner,et al.  Diffractive Coupling For Photonic Networks: How Big Can We Go? , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[137]  R. Morandotti,et al.  Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures , 2008 .

[138]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[139]  Stefano Fusi,et al.  Building brain-inspired computing , 2019, Nature Communications.

[140]  Lianqing Zhu,et al.  Miniaturized Diffraction Grating Design and Processing for Deep Neural Network , 2019, IEEE Photonics Technology Letters.

[141]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[142]  A. Boes,et al.  11 TOPS photonic convolutional accelerator for optical neural networks , 2021, Nature.

[143]  Ke Liu,et al.  Experimental realization of arbitrary activation functions for optical neural networks. , 2020, Optics express.

[144]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[145]  Mario Miscuglio,et al.  All-optical nonlinear activation function for photonic neural networks [Invited] , 2018, Optical Materials Express.

[146]  Romain Modeste Nguimdo,et al.  Simultaneous Computation of Two Independent Tasks Using Reservoir Computing Based on a Single Photonic Nonlinear Node With Optical Feedback , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[147]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[148]  Laurent Larger,et al.  Reinforcement Learning in a large scale photonic Recurrent Neural Network , 2017, Optica.

[149]  Li Fang,et al.  All-optical reservoir computer based on saturation of absorption. , 2014, Optics express.

[150]  Aydogan Ozcan,et al.  All-Optical Information Processing Capacity of Diffractive Surfaces , 2020, ArXiv.

[151]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[152]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[153]  Guy Verschaffelt,et al.  A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems , 2019, Nature Communications.

[154]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[155]  R. Richards,et al.  Scaling laws and polystyrene networks: a quasi-elastic light scattering study , 1985 .

[156]  Aydogan Ozcan,et al.  Ensemble learning of diffractive optical networks , 2020, Light: Science & Applications.

[157]  Shanhui Fan,et al.  Training of Photonic Neural Networks through In Situ Backpropagation , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[158]  Yong Wang,et al.  Orbital angular momentum detection based on diffractive deep neural network , 2019, Optics Communications.

[159]  Ryan Hamerly,et al.  Large-Scale Optical Neural Networks based on Photoelectric Multiplication , 2018, Physical Review X.

[160]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[161]  M. Takenaka,et al.  High-modulation-efficiency InGaAsP/Si hybrid MOS optical modulator with Mach-Zehnder interferometer , 2017, 1702.02245.

[162]  Feng Xu,et al.  Fourier-space Diffractive Deep Neural Network. , 2019, Physical review letters.

[163]  Benjamin Schrauwen,et al.  Reservoir computing: a photonic neural network for information processing , 2010, Photonics Europe.

[164]  Gordon Wetzstein,et al.  Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification , 2018, Scientific Reports.

[165]  Christopher C. Tison,et al.  Linear programmable nanophotonic processors , 2018, Optica.

[166]  C. Menyuk,et al.  Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions , 2019, Nature Communications.