A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects

The theory of splines is a well studied topic, but the kinship of splines with fractals is novel. We introduce a simple explicit construction for a -cubic Hermite Fractal Interpolation Function (FIF). Under some suitable hypotheses on the original function, we establish a priori estimates (with respect to the Lp-norm, 1≤p≤∞) for the interpolation error of the -cubic Hermite FIF and its first derivative. Treating the first derivatives at the knots as free parameters, we derive suitable values for these parameters so that the resulting cubic FIF enjoys global smoothness. Consequently, our method offers an alternative to the standard moment construction of -cubic spline FIFs. Furthermore, we identify appropriate values for the scaling factors in each subinterval and the derivatives at the knots so that the graph of the resulting -cubic FIF lies within a prescribed rectangle. These parameters include, in particular, conditions for the positivity of the cubic FIF. Thus, in the current article, we initiate the study of the shape preserving aspects of fractal interpolation polynomials. We also provide numerical examples to corroborate our results.

[1]  Michael F. Barnsley,et al.  The calculus of fractal interpolation functions , 1989 .

[2]  M. Navascués,et al.  Natural bicubic spline fractal interpolation , 2008 .

[3]  V. Drakopoulos,et al.  On the box dimension for a class of nonaffine fractal interpolation functions , 2003 .

[4]  Nira Dyn,et al.  Analysis of Hermite-interpolatory subdivision schemes , 1999 .

[5]  R. Varga,et al.  Piecewise Hermite interpolation in one and two variables with applications to partial differential equations , 1968 .

[6]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[7]  Jean-Louis Merrien A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.

[8]  P. Lancaster Curve and surface fitting , 1986 .

[9]  A. K. B. Chand,et al.  Cubic hermite and cubic spline fractal interpolation functions , 2012 .

[10]  Carla Manni,et al.  Curve and surface construction using Hermite subdivision schemes , 2010, J. Comput. Appl. Math..

[11]  G. Alexits Approximation theory , 1983 .

[12]  A. Chand,et al.  CUBIC SPLINE COALESCENCE FRACTAL INTERPOLATION THROUGH MOMENTS , 2007 .

[13]  Jochen W. Schmidt,et al.  Positivity of cubic polynomials on intervals and positive spline interpolation , 1988 .

[14]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[15]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[16]  P. Massopust Fractal Functions, Fractal Surfaces, and Wavelets , 1995 .

[17]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[18]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[19]  M. A. Navascués,et al.  Generalization of Hermite functions by fractal interpolation , 2004, J. Approx. Theory.

[20]  Leoni Dalla,et al.  Regular Article: On the Parameter Identification Problem in the Plane and the Polar Fractal Interpolation Functions , 1999 .

[21]  A. K. B. Chand,et al.  Generalized Cubic Spline Fractal Interpolation Functions , 2006, SIAM J. Numer. Anal..

[22]  B. Jüttler,et al.  A B-Spline Approach to Hermite Subdivision , 2000 .

[23]  A. Chand,et al.  Generalized hermite fractal interpolation , 2009 .

[24]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .