Vertices of given degree in series-parallel graphs

We show that the numbers of vertices of a given degree k ≥ 1 in several kinds of series-parallel labeled graphs of size n satisfy a central limit theorem with mean and variance proportional to n, and quadratic exponential tail estimates. We further prove a corresponding theorem for the number of nodes of degree two in labeled planar graphs. The proof method is based on generating functions and singularity analysis. In particular, we need systems of equations for multivariate generating functions and transfer results for singular representations of analytic functions. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010

[1]  Philippe Flajolet,et al.  Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..

[2]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[3]  Hsien-Kuei Hwang,et al.  Large deviations for combinatorial distributions. I. Central limit theorems , 1996 .

[4]  Marc Noy,et al.  Enumeration and limit laws for series-parallel graphs , 2007, Eur. J. Comb..

[5]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[6]  Omer Giménez,et al.  The number of planar graphs and properties of random planar graphs , 2005 .

[7]  Timothy R. S. Walsh,et al.  Counting labelled three-connected and homeomorphically irreducible two-connected graphs , 1982, J. Comb. Theory, Ser. B.

[8]  Hsien-Kuei Hwang,et al.  Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques , 1994 .

[9]  Konstantinos Panagiotou,et al.  On the Degree Sequences of Random Outerplanar and Series-Parallel Graphs , 2008, APPROX-RANDOM.

[10]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[11]  M. Drmota Systems of functional equations , 1997 .

[12]  Ludger Kaup,et al.  Holomorphic Functions of Several Variables , 1983 .

[13]  Michael Drmota,et al.  The Distribution of Patterns in Random Trees , 2008, Comb. Probab. Comput..

[14]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[15]  Marc Noy,et al.  Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.

[16]  Konstantinos Panagiotou,et al.  On properties of random dissections and triangulations , 2008, SODA '08.